
Structure générale.

C'est la trame que l'on rencontre dans la plupart des réseaux locaux actuels.

Ce sont ces informations qui circulent sur le réseau

Trame ETHERNET II AA = 10101010 AB = 10101011 En-tête LIAISON Adresse MAC Adresse MAC Ether AA|AA|AA|AA|AA|AA|AB| Datagramme IP **FCS** Destination Source Type 7 Octets 6 Octets 6 Octets 2 Octets 46 à 1500 Octets 4 Octets

Préambule : (7 octets) :

Permet la synchronisation des horloges de transmission. Il s'agit d'une suite de 1 et de 0 soit 7 octets à la valeur 0xAA

SFD: (1 octets)

"Starting Frame Delimiter". Il s'agit d'un octet à la valeur 0xAB. Il doit être reçu en entier pour valider le début de la trame.

En-tête: (14 octets) -

- Adresse MAC du destinataire (6 octets)
- Adresse MAC de l'émetteur (6 octets)
- EtherType (Type de protocole) (2 octets)

Exemples de valeurs du champ EtherType	Exemples de	valeurs du	champ	EtherType:
--	-------------	------------	-------	------------

Ether	Type	Protocole
	. 7 -	

0x0800	IPv4
0x0806	ARP (Address Resolution Protocol)
0x8035	RARP (Reverse ARP)
0x8100	802.1Q (encapsulation vlan)
0x880B	PPP (Point-to-Point Protocol)
0x8847	MPLS (Multi-Protocol Label Switching)

Datagramme IP: (46 à 1500 octets)

Frame Check Sequence. Ensemble d'octets permettant de vérifier que la réception s'est effectuée sans erreur.

FCF: (4 octets)

Frame Check Sequence. Ensemble d'octets permettant de vérifier que la réception s'est effectuée sans erreur. C'est le résultat d'un calcul polynomial appelé CRC (Cyclic Redundancy Code).

Exercice

Voici le contenu d'une trame Ethernet II :

ffff	ffff	ffff	09ab	14d8	0548	0806	0001
0800	0604	0001	09ab	14d8	0548	7d05	300a
0000	0000	0000	7d12	6e03			

Cette trame est présentée par groupes de 2 octets (avec 2 digits hexadécimaux par octet) séparés par des caractères espace ou des retours à la ligne (qui ne sont pas significatifs et servent juste à la lisibilité). Ni le préambule ni le FCF ne figurent dans cette capture :

Analyser cette trame pour extraire ses différents champs (Adresses, EtherType et Données)

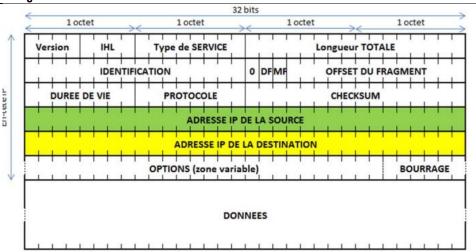
			_	

Voici le contenu d'une autre trame Ethernet II :

000f	1f13	349a	0001	304a	3800	0800	4500
0054	9c1e	0000	3301	2d8c	8b7c	bb04	ac10
cb6d	0000	f72b	ea30	0002	c31f	6047	0e37
0200	0809	0a0b	0c0d	0e0f	1011	1213	1415
1617	1819	1a1b	1c1d	1e1f	2021	2223	2425


-10	che	savoir

Structure d'une trame Ethernet II et d'un datagramme IP


2/2

2627 2829 2a2b 2c2d 2e2f 3031 3233 3435 3637

Même question:

Datagramme IP

Version: (4 bits)

Indique le numéro de version du protocole IP utilisé (généralement 4).

IHL: (4 bits)

Internet Header Lenght (Longueur d'entête). Spécifie la longueur de l'en-tête du Datagramme en nombre de mots de 32 bits. Ce champ ne peut prendre une valeur inférieure à 5.

Type de service : (8 bits)

Donne une indication sur la qualité de « service » souhaitée pour l'acheminement des données.

Longueur totale : (16 bits)

Longueur du datagramme entier y compris en-tête et données mesurée en octets.

Identification: (16 bits)

Valeur assignée par l'émetteur pour identifier les fragments d'un même datagramme.

Flags: (3 bits)

Commutateurs de contrôle :

OFFSET: (13 bits)

Décalage du premier octet du fragment par rapport au datagramme complet non fragmenté. Cette position est mesurée en blocs de 8 octets (64 bits).

Durée de vie : (8 bits)

Temps en secondes pendant lequel le datagramme doit rester dans le réseau. Si ce champ vaut 0, le datagramme doit être détruit. Ce temps diminue à chaque passage du datagramme d'un hôte à l'autre.

Protocole: (8 bits)

Protocole porté par le datagramme (au-dessus de la couche IP)

Valeur	Protocole
1	ICMP
6	TCP
17	UDP

Checksum: (16 bits) (Somme de contrôle)

IP Source : (32 bits) Adresse IP de l'émetteur.

<u>IP Destination : (32 bits)</u> Adresse IP du destinataire. **Options : (Variable)** Le champ est de longueur variable.

Bourrage : (Variable) Existe que pour assurer à l'en-tête une taille totale multiple de 4 octets. Le

bourrage se fait par des octets à 0.

Exercice

Identifiez dans le datagramme de la 2ème trame le protocole utilisé ainsi que les adresses IP de la source et de la destination.