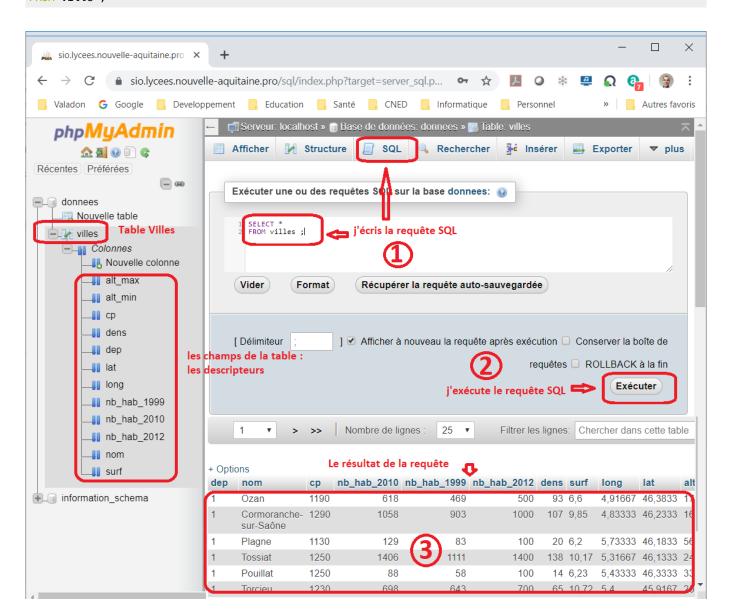
Activité les données structurées des bases de données

Quand nous avons une **grande quantité d'informations numériques** à gérer, il est nécessaire de les **organiser** et d'utiliser un **logiciel spécialisé**, le **S**ystèmes de **G**estion de **B**ases de **D**onnées pour les utiliser.

Actuellement la grande majorité des SGBD utilise le modèle relationnel qui consiste :

- à mettre ensemble des données de même nature en les rangeant dans des tables de données ;
- à définir des **relations** pour relier et croiser les données **entre elles**.
- à utiliser le langage SQL ((Structured Query Language) pour interroger, modifier ou supprimer des données.

Dans cette activité je vais **interroger** les données sur les villes française du site web http://sio.lycees.nouvelle-aquitaine.pro/sql en utilisant le langage de requêtes SQL pour exécuter des **requêtes SQL** sur la table **ville**.


Les requêtes SQL

Choisir les données à afficher : la projection

La projection consiste à choisir les informations, en utilisant la clause select suivie les champs à afficher :

• Exemple :

SELECT *
FROM ville ;

Après la clause **select**, j'indique :

- les colonnes à afficher séparées par des virgules,
- ou bien je mets le caractère * pour visualiser le contenu de **toutes les colonnes**.

Puis j'indique avec la clause **from** la table dans laquelle se trouve les données.

Question 1 : Ecrire la requête SQL pour avoir le nom, le code postal et le numéro de département (dans cet ordre) des villes.

Résultat à obtenir :

nom	ср	dep
Ozan	1190	1
Cormoranche-sur-Saône	1290	1

... soit 36 700 lignes.

• je peux aussi faire des calculs ou utiliser des fonctions :

Question 2 : Ecrire la requête SQL qui indique pour chaque ville **l'augmentation** de la population entre 2010 et 2012. **Résultat à obtenir :**

ville	augmentation
Ozan	-118
Cormoranche-sur-Saône	-58
Plagne	-29
Tossiat	-6
Pouillat	12

... soit 36 700 lignes.

Eviter des résultats en double

Des requêtes peuvent renvoyer des résultats identiques et il est parfois utile d'évier cela avec le mot clé distinct.

• Exemple connaître la liste des départements sans utiliser **distinct** :

```
SELECT dep AS Département FROM villes ;
```

Résultat :

Départem	ent
1	
1	
1	

... soit 36 700 lignes.

• Connaître la liste des départements en utilisant distinct qui doit être placé une seule fois juste après le mot clé select :

```
SELECT DISTINCT dep AS Département FROM villes ;
```

Résultat :

Département
1
2

/ Printed on 2025/11/08 14:28

... soit 102 lignes.

Question 3 : Ecrire la requête SQL qui donne la liste des codes postaux. La requête SQL doit renvoyer uniquement 6 082 lignes.

Trier les résultats obtenus

Les requêtes SQL renvoient en général les données dans **l'ordre** où elles sont disponibles dans la base de données. Pour obtenir un ordre de **tri différent** on utilise les mots clés **order by** suivi des colonnes à trier en ascendant, par défaut (**asc**) ou en descendant (**desc**).

• Exemple connaître la liste villes par ordre alphabétique :

```
SELECT nom AS Ville
FROM villes
ORDER BY nom ASC;
```

Résultat :

Ville	
Aast	
Abainvi	lle
Abanco	urt

... soit 36 700 lignes.

Question 4 : Ecrire la requête SQL qui donne la liste des villes **selon le nom d'habitants** par ordre **décroissant** (indiquer la ville la plus peuplée premier)

La sélection

J'utilise la sélection si je ne souhaite avoir des données qui réponde à une condition en utilisant la clause where :

• Exemple : avoir toutes les information de la ville de Panazol

```
SELECT *
FROM villes
WHERE nom = 'panazol';
```

Résultat: 1 ville(s) trouvée(s)!

dep	nom	ср	nb <i>hab</i> 2010	nb <i>hab</i> 1999	nb <i>hab</i> 2012	dens	surf	longitude	latitude	alt <i>min ^alt</i> max	
87	Panazol	87350	10392	9727	10100	518	20	1.3	45.8333	215	351

Voici les opérateurs utilisables :

Les opérateurs de comparaison et logiques

Opérateur de comparaison	Description	Opérateurs logiques	Description
=	égal à	and	les deux conditions doivent être vérifiées simultanément
<	inférieur à	or	au moins une des deux conditions doit être vérifiée
>	supérieur à		
(=	inférieur ou égal		
>=	supérieur ou égal		
<>	différent de		

Question 5 : Ecrire la requête SQL qui donne la liste des villes qui ont **plus de 5000 habitants** en **2012**. La requête SQL doit renvoyer uniquement **2 007 lignes**.

Les opérateur de comparaison de chaînes de caractères

LIKE	comparaison de chaînes (identiques)	
NOT LIKE	chaîne différente	

% permet de remplacer n caractères _ permet de remplacer 1 caractère

• Exemple : connaître les villes dont le nom commence par Limoges : <code sql> select nom as ville from villes where nom like 'limoges%'; </code> Résultat :

mnoges/o, 4/code
ville
Limoges-Fourches
Limoges

Question 6 : Ecrire la requête SQL qui donne la liste des villes dont le nom contient les caractères **paris**. La requête SQL doit renvoyer uniquement **10 lignes**.

Activité à faire à la maison

Je consulte la vidéo https://pixees.fr/lhistoire-des-base-de-donnees-ou-presque/ pour répondre aux questions suivantes :

- Quel a été le **premier usage** des bases de données ?
- Quelles sont les **deux tables** utilisées pour gérer les données des expériences du professeur Tournesol ?
- Quel a été la méthode utilisée pour retrouver l'unique expérience qqi a permis d'obtenir une grande rose à partir de deux graines de petite tailles ?

Pour en savoir plus

La vidéo https://youtu.be/lJJgcZ2DEs0 sur la structurer et gérer des données :

Video

Je continue ...

Je reviens à l'accueil SNT du thème Les données structurées et leur traitement

Printed on 2025/11/08 14:28

From:

/ - Les cours du BTS SIO

Permanent link:

/doku.php/snt/donnee/abdd?rev=1568289970

Last update: 2019/09/12 14:06

