Cours : Adressage TCP/IP des STA en réseau

Compléments au cours : Adressage TCP/IP des STA en réseau

Présentation

Document :

Dans un réseau informatique on utilise un standard, la suite de protocoles TCP/IP, pour configurer et gérer les différents hôtes du réseau :

- TCP (Transmission Control Protocol)
- IP (Internet Protocol)

Les hôtes du réseaux sont : STA, serveurs, périphériques (imprimantes) , équipements

L'adressage est unique :

- Adresse physique de la carte réseau : adresse MAC
- Adresse logique : adresse IP

Evolution du réseau de câble sous-matins utilisé pour Internet entre 1990 et 2016 : https://qz.com/se/map-of-the-internet/

Adressage IP version 4

L'adresse IP est constituée de 4 octets (32 bits) exprimés sous forme décimale pointée.

Ex:172.168.5.20

- Une partie à gauche identifie le réseau (net-id);
- L'autre partie à droite identifie l'hôte (host-id).

C'est le masque de sous-réseau qui permet de faire cette distinction.

Définition d'un réseau IP : ensemble des postes qui partage la même adresse réseau.

Classe d'adresses IPv4 A, B, C, D et E

Classe A

- 1er octet désigne le réseau
- Le 1er bit est égal à O
- Adresse : Orrrrrr.hhhhhhhhh.hhhhhhhhhhhhhhhhhh
- Masque de sous-réseau 255.0.0.0

Classe B

- Les 2 premiers octets désignent le réseau
- Les 2 premiers bits sont égal à 10
- Adresse: 10rrrrr.rrrrrrr.hhhhhhhh.hhhhhhhh
- Masque de sous-réseau 255.255.0.0

Classe C

- Les 3 premiers octets désigne le réseau
- Les 3 premiers bits sont égal à 110
- Adresse : 110rrrrr.rrrrrrrrr.hhhhhhhh
- Masque de sous-réseau 255.255.255.0

Classe D

- Adresse de groupe pour la multidiffusion
- Pas d'adresse de réseau
- Les 4 premiers bits sont égal à 1110 puis adresse multidestinataires (28 bits)

Classe E

• réservée à des fins expérimentales

Calculer l'adresse de réseau

Exemple: Adresse IP 131.107.8.1 masque 255.255.0.0

131	\llbracket
1000 0011	$\ $
255	$\ $
1111 1111	ı

Utilisation de l'opérateur ET (AND)

131 ET 255 . ET . ET . ET Adresse réseau logique est 131.

Adresse d'hôte logique

Division de l'adresse IP (32 bits)

Classe A	0	id réseau (7bits)	id hôte (24 bits)
Classe B	10	id réseau (14bits	id hôte (16 bits)
Classe C	110	id réseau (21bits)	id hôte (8 bits)

Nombre de réseaux possibles et d'hôtes par classe d'adresses IP

Classe d'adresses	Nb de réseaux	Nb d'hôte
Classe A	$2^7 = 128$	$2^{24} = 16777216$
Classe B		
Classe C		

Espace d'adressage possible par classe d'adresse IP

Classe d'adresse	Adresses
Classe A	1.0.0.0 à 127.255.255.255
Classe B	128.0.0.0 à 191.255.255.255
Classe C	192.0.0.0 à 223.255.255.255
Classe D	224.0.0.0 à 239.255.255.255
Classe E	240.0.0.0 à 255.255.255.255

Adresses publiques

- Uniques mondialement et attribuées par l'ICANN (Internet Corporation for Assigned Names and Numbers)
- Géolocalisation possible

Adresses particulières

- Un numéro de réseau ou d'hôte ne peut avoir tous les bits à 0 ou à 1.
- Adresse de diffusion : tous les bits hôtes sont à 1. Exemple : 132.148.255.255 identifie tous les hôtes du réseau 132.148.0.0
- Adresse de réseau : tous les bits hôtes sont à 0 **Exemple** : adresse de réseau 132.148.0.0

Adresses IP privées :

- utilisables sur des réseaux privés
- non gérées par les routeurs Internet : non routables sur Internet

Classe A: 10.0.0.0 à 10.255.255.255
Classe B: 172.16.0.0 à 172.31.255.255
Classe C: 192.168.0.0 à 192.168.255.255

Adresses IP réservées :

• Réservée : Adresse de bouclage locale (loopback) 127.0.0.1

* Réservées : adresses APIPA (Automatic Private Internet Protocol Addressing) 169.254.0.0 à 169.254.255.255

Masque de sous-réseau par défaut

Classe d'adresse	Adresses
Classe A	255.0.0.0
Classe B	255.255.0.0
Classe C	255.255.255.0

Exercice : vérifiez la validité de ces adresses publiques Internet

Adresse IP	Classe	Partie réseau	Partie hôte
124.100.110.120			
128.8.01.02			
127.0.246.15			
195.250.251.92			
200.201.195.300			
2.58.91.215			

Notation CIDR

La pénurie et le gaspillage d'adresses IP a nécessité une gestion différente de l'espace d'adressage :

- Distinction classe A, B et C est obsolète
- Espace d'adressage = collection de sous-réseau
- Masque de sous-réseau est de longueur variable
- Utilisation d'une notation CIDR (Classless Inter-Domain Routing)
- Le masque ne peut plus être déduit de l'adresse IP
- /n représente le nombre de bits à 1 dans le masque
- le masque 255.255.255.0 s'écrit /24 en notation CIDR
- Adresse IP 131.107.8.1 masque 255.255.0.0 s'écrit 131.107.8.1/16
- Calcul du nombre d'adresses d'un sous-réseau :
 - 2 taille de l'adresse masque
 - \circ **Exemple**: masque /19; soit $2^{32\cdot 19} = 2^{13} = 8192$ adresses

Les cours et activités ...

Je reviens à la liste des cours et des activités SI2.

From:

/ - Les cours du BTS SIO

Permanent link: /doku.php/si2/c2

Last update: 2019/10/08 10:22

