
2026/02/07 16:27 1/5 Activité : découvrir Docker

Les cours du BTS SIO - /

Activité : découvrir Docker

Pour cette découverte de Docker, vous pouvez :

installer Docker sur votre ordinateur ou
utiliser l'environnement de découverte appelé Play with Docker (PWD) : https://labs.play-with-docker.com/

Un premier conteneur

Lancement sans option d’un conteneur

Cette commande lance le classique Hello world ! :

$ docker run hello-world
Unable to find image 'hello-world:latest' locally
latest: Pulling from library/hello-world
c1ec31eb5944: Already exists
Digest: sha256:305243c734571da2d100c8c8b3c3167a098cab6049c9a5b066b6021a60fcb966
Status: Downloaded newer image for hello-world:latest

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:
 1. The Docker client contacted the Docker daemon.
 2. The Docker daemon pulled the "hello-world" image from the Docker Hub.
 (amd64)
 3. The Docker daemon created a new container from that image which runs the
 executable that produces the output you are currently reading.
 4. The Docker daemon streamed that output to the Docker client, which sent it
 to your terminal.

To try something more ambitious, you can run an Ubuntu container with:
 $ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:
 https://hub.docker.com/

For more examples and ideas, visit:
 https://docs.docker.com/get-started/

Ce qu’il faut retenir de l’exécution de cette commande :

La première ligne indique que l’image du conteneur 'hello-world:latest' n’est pas disponible localement c’est-à-dire sur voter
ordinateur. De plus, comme aucune version du conteneur n’est précisée, c’est la dernière version disponible, la latest qui est
recherchée.
L’image recherchée est alors tirée (pull) de Docker Hub depuis Internet.
Une explication des étapes réalisées est indiquée : le client Docker, la session de terminal de votre ordinateur, contacte le daemon
Docker de votre ordinateur (le service Docker) qui tire l’image du conteneur depuis Docker Hub, crée un container, exécute ce
qui est prévu dans l’image du conteneur (la production du texte à afficher) et envoie cette sortie texte vers le client Docker votre
terminal.
Le conteneur est ensuite arrêté automatiquement car le traitement prévu s’est effectué, l’affichage du texte et rien d’autre.

Afficher les images Docker présentes sur la machine

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
hello-world latest d2c94e258dcb 19 months ago 13.3kB

Vous pouvez vérifier la présence de l’image qui a été tirée (pull) de Docker Hub et stockée sur votre serveur. Docker gère un cache des
images sur la machine. Lors du prochain démarrage d’une instance de conteneur sur la même image il n’y aura pas de nouveau
téléchargement sauf si elle a été modifiée entre-temps.

https://labs.play-with-docker.com/

Last update: 2024/12/08 21:58 reseau:docker:utiliserdocker /doku.php/reseau/docker/utiliserdocker?rev=1733691513

/ Printed on 2026/02/07 16:27

INFORMATION
Pour en savoir plus sur une image il suffit de faire une recherche sur Docker Hub. Pour le conteneur hello-world :
https://hub.docker.com/_/hello-world

Explication des tags

Le TAG associé à l’image ubuntu est latest et est le marqueur de version de l’image.
IMAGE ID est l’identifiant unique de l’image.
CREATED est la date de création de l’image publiée sur le site Docker Hub.
SIZE est sa taille virtuelle, c’est-à-dire de la couche logicielle téléchargée.

Lister les conteneurs actifs

L’image du conteneur hello-world est présente sur votre serveur mais après le lancement d’un conteneur basé sur cette image, vous avez
retrouvé l’invite de commandes de votre serveur. Le conteneur lancé s’est ensuite arrêté automatiquement. Mais existe-il toujours ?

Pour constater que le conteneur lancé est bien arrêté vous pouvez visualiser les conteneurs actifs :

btssio@ubuntudocker:~$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
btssio@ubuntudocker:~$

Le conteneur hello-world n’est effectivement plus actif.

Lister tous les conteneurs y compris ceux qui sont inactifs

Relancez le conteneur hello-world. Vous pouvez à nouveau vérifier que celui n’est pas actif après l’affiche du texte prévu.

Visualisez maintenant tous les conteneurs créés, qu’ils soient actifs ou non :

btssio@ubuntudocker:~$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
9bbd425c86f4 hello-world "/hello" 2 seconds Exited (0) 1 s ago vibrant_goldberg
ae50ecb3a66d hello-world "/hello" 49 seconds Exited (0) 47 s ago quirky_elbakyan
btssio@ubuntudocker:~$

Les 2 conteneurs basés sur la même image hello-world, sont bien présents mais arrêtés sans erreur normale (code de sortie 0)
comme le montre le champ STATUS : Exited (0). Le premier conteneur s’est arrête il y a 1 seconde, le 2ème il y a 47
secondes. Chaque conteneur : * possède un identifiant de conteneur CONTAINER ID, * et un nom, NAMES, qui a été généré
par de démon Docker. La colonne COMMAND nous renseigne sur le processus qui avait été lancé, à savoir un script hello.
===== Comprendre le système de couche logicielle des images Docker ===== ==== Récupérer une image dans sa dernière
version ==== <code shell> $ docker pull ubuntu Using default tag: latest latest: Pulling from library/ubuntu de44b265507a:
Pull complete Digest: sha256:80dd3c3b9c6cecb9f1667e9290b3bc61b78c2678c02cbdae5f0fea92cc6734ab Status:
Downloaded newer image for ubuntu:latest </code> Le TAG est latest par défaut si vous ne précisez pas la version du
conteneur voulu. Cette image ubuntu est une image officielle ; elle n’est pas préfixée et vous pouvez avoir des informations
sur Docker hub. Lien : https://hub.docker.com/

https://hub.docker.com/_/hello-world
/lib/exe/detail.php/reseau/docker_01.png?id=reseau%3Adocker%3Autiliserdocker
https://hub.docker.com/

2026/02/07 16:27 3/5 Activité : découvrir Docker

Les cours du BTS SIO - /

Cette image est basée sur quatre couches logicielles : <code shell> … f476d66f5408: Pull complete 8882c27f669e: Pull complete
d9af21273955: Pull complete f5029279ec12: Pull complete … </code>

INFORMATION
Le chargement de ce conteneur ubuntu et des couches logicielles nécessaires a lieu une fois pour toutes. Tous les
lancements de conteneur suivant se baseront sur cette image, y compris - et c’est une des grands avantages de
l’architecture par couches - toutes les images qui se trouvent sur Docker Hub et qui ont été construites à partir de cette
image ubuntu. Et il existe sur Docker Hub de nombreuses images basées sur Ubuntu qui est une distribution de base
fréquemment utilisée pour les images Docker.

Lancez un conteneur Ubuntu. Comme précédemment, le conteneur est ensuite arrêté mais existe bien. La colonne COMMAND indique que le
processus qui a été lancé est cette fois-ci un shell Bash. <code shell> btssio@ubuntudocker:~$ docker run ubuntu btssio@ubuntudocker:~$
docker ps -a CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES b5ec671c6d11 ubuntu “/bin/bash” 21 s ago Exited …
laughing_ride … </code> Vous pouvez prendre connaissance de la configuration du conteneur sur Docker Hub en consultant son fichier
Dockerfile.

IMPORTANT
Le fichier Dockerfile associé à une image Docker, décrit exactement comment l’image a été construite. Quand vous
recherchez sur Docker Hub une image qui doit répondre à votre besoin et qui a été publié par un membre de la
communauté, ce fichier vous permet de savoir ce que contient l’image afin de vous permettre de faire un choix éclairé
parmi la profusion d’images possibles. Une bonne pratique consiste donc :

à choisir une image officielle si celle-ci répond à votre besoin,
et, si cela n’est pas le cas, à choisir une image de la communauté en regardant si elle est souvent utilisée (sa
popularité), sa documentation mais aussi son fichier Dockerfile pour savoir exactement ce qu’elle contient.

Sur Docker Hub plusieurs Dockerfile sont indiqués pour l’image officielle ubuntu :

Télécharger l’image Docker ubuntu :bionic-20210827 <code shell> btssio@ubuntudocker:~$ docker pull ubuntu:bionic-20210827
bionic-20210827: Pulling from library/ubuntu e4ca327ec0e7: Pull complete Digest:
sha256:9bc830af2bef73276515a29aa896eedfa7bdf4bdbc5c1063b4c457a4bbb8cd79 Status: Downloaded newer image for
ubuntu:bionic-20210827 docker.io/library/ubuntu:bionic-20210827 btssio@ubuntudocker:~$ docker images REPOSITORY TAG IMAGE ID
CREATED SIZE Ubuntu bionic-20210827 d131e0fa2585 11 days ago 102MB ubuntu latest d131e0fa2585 11 days ago 102MB
btssio@ubuntudocker:~$ </code> Il s’agit exactement de la même image comme le montre le champ IMAGE ID. Vous pouvez donc
télécharger une version plus ancienne d’Ubuntu si votre projet porte sur une version bien précise de cet OS et faire cohabiter ensuite des
conteneurs utilisant des versions différentes de système d’exploitation ou de paquets logiciels. Le champ SIZE indique la taille virtuelle de
l’image, c’est à dire la taille de la couche téléchargée qui est plus important que celle du conteneur hello-world car l’image ubuntu ne
s’appuie pas sur une couche préexistante. Pour connaître comment cette image a été construite, cliquez sur le lien du Dockerfile : <code
shell> FROM scratch ADD ubuntu-bionic-core-cloudimg-amd64-root.tar.gz / … # overwrite this with 'CMD []' in a dependent Dockerfile CMD
[“/bin/bash”] </code> La première ligne - FROM scratch - indique que cette image ne se base pas sur une image préexistante. On part de la
version de base d’Ubuntu. La dernière ligne - CMD [“/bin/bash”] - indique le processus qui doit être lancé par le conteneur et qui est ici un
shell Bash. Sans rentrer dans le détail du contenu du fichier Dockerfile, les différentes actions décrites dans ce fichier se sont traduites par
le téléchargement des quatre couches de l’image ubuntu sur votre serveur Ubuntu.
===== Utiliser les conteneurs ===== Le conteneur ubuntu lancé prévoit bien l’exécution d’un processus shell mais il s’est ensuite
automatiquement arrêté. En effet, comme rien n’a été précisé lors du lancement pour que vous puissiez utiliser ce shell, le conteneur a
considéré que l’action à faire, lancer un shell et rien d’autre, est terminée. Il s’arrête donc. ==== Lancer un conteneur en mode interactif

/lib/exe/detail.php/reseau/docker_02.png?id=reseau%3Adocker%3Autiliserdocker

Last update: 2024/12/08 21:58 reseau:docker:utiliserdocker /doku.php/reseau/docker/utiliserdocker?rev=1733691513

/ Printed on 2026/02/07 16:27

==== Pour pouvoir réellement interagir et utiliser le conteneur ubuntu grâce à ce processus de shell Bash qui est lancé, il faut : * lancer le
conteneur en mode interactif pour lui associer une console TTY : paramètre -i, * ouvrir une console pour que vous puissiez saisir des
commandes : paramètre -t. <code shell> btssio@ubuntudocker:~$ docker run -i -t ubuntu root@394beb25ab78:/# ls bin dev home lib64
mnt proc run srv tmp var boot etc lib media opt root sbin sys usr root@394beb25ab78:/# cd /root root@394beb25ab78:/# touch docker.txt
root@394beb25ab78:/# ls docker.txt root@394beb25ab78:/# </code> Le lancement du conteneur est toujours aussi rapide et le résultat de
la commande est différent puisque vous avez le shell du conteneur avec comme nom l’identifiant du nouveau conteneur lancé. Vous
êtes identifiés comme root sur la VM nommée 394beb25ab78 qui est l’identifiant du nouveau conteneur lancé et qui a servi à attribuer un
nom à la VM. La commande ls montre l’arborescence de la VM et non celle du serveur Ubuntu. Un fichier a été créé dans le dossier /root.
Tapez Exit pour revenir à la machine hôte en sortant du shell et donc du conteneur qui ne faisant que tourner cet unique processus
s’arrête.

IMPORTANT
Toutes les modifications effectuées dans le conteneur lancé, comme la création de ce fichier docker.txt, ne modifie pas
l’image ubuntu qui a servi à sa création. Les modifications ne sont faites que dans une nouvelle couche ajoutée par
Docker pour gérer les modifications du système de fichiers afin de n’avoir aucun impact sur la couche inférieure, la couche
ubuntu. En lançant un nouveau conteneur, vous consterez que le dossier root ne contient pas de fichier docker.txt.

Pour lancer un conteneur arrêté avec son identifiant ou son nom : <code shell> btssio@ubuntudocker:~$ docker start IDouson_nom
</code> ==== Autre commande pour visualiser les conteneurs actifs ==== <code shell> btssio@ubuntudocker:~$ docker container ls
</code> ==== Lancer un conteneur en mode détaché ==== Lors du lancement d’un conteneur, on perd l’accès à la console du serveur
Ubuntu. Cette commande permet de lancer le conteneur et de retrouver le shell du serveur sans arrêter le conteneur. <code shell>
btssio@ubuntudocker:~$ docker run -i -t -d ubuntu e70a11313849c4c2ce8beebe72935368b909759ab5eb4e2c2f1bcf715c1a2bd1
btssio@ubuntudocker:~$ docker ps CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES e70a11313849 ubuntu “/bin/bash” 3
seconds ago Up 2 s gallant_kilby </code> On peut aussi écrire les paramètres de la façon suivante : <code shell> btssio@ubuntudocker:~$
docker run -itd ubuntu </code> ==== Se connecter à un conteneur lancé ==== Après le lancement d’un conteneur en mode détaché, il
peut être nécessaire de pouvoir accéder à la console du conteneur et donc au shell. Voici deux manières de procéder. * S’attacher à la
console du conteneur : ATTENTION, en quittant le shell, cela arrête le processus shell et donc le conteneur : <code shell>
btssio@ubuntudocker:~$ docker attach gallant_kilby root@e70a11313849:/# </code> * Pour quitter le conteneur mais en le laissant
s’exécuter en arrière-plan : <code> Ctrl + p + q. </code> * Pour lancer un processus shell (commande ls par exemple) dans un conteneur
en cours d'exécution : <code shell> btssio@ubuntudocker:~$ docker exec -it gallantkilby ls bin boot dev … btssio@ubuntudocker:~$
</code> ==== Obtenir la liste des modifications d’un conteneur par rapport à son image de lancement ==== <code shell>
btssio@ubuntudocker:~$ docker diff 394beb25ab78 C /root A /root/.bashhistory A /root/docker.txt btssio@ubuntudocker:~$ </code> Cette
commande utilise la syntaxe diff/patch en Linux : * D pour les parties d’arborescence supprimées, * C pour les parties d’arborescence
créées : le dossier /root * A pour les ajouts : le fichier .bash_history est créé automatiquement pour stocker l’historique des actions
effectuées dans le shell, et le fichier docker.txt que vous avez créé manuellement. ==== Conteneurs et variables d'environnement ==== *
Modification du point d’entrée par défaut (action par défaut au lancement du conteneur) : Lancer un conteneur basée sur l’image Ubuntu
qui liste les variables d’environnement présentes dans l’image. <code shell> $ docker run ubuntu env
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin HOSTNAME=9a123737965f HOME=/root </code> * Injecter une variable
d’environnement au démarrage d’un conteneur en faisant remonter la variable LOGNAME dans un conteneur. <code shell> $ docker run -i -
t -e=LOGNAME ubuntu root@41716d7ee125:/# env HOSTNAME=41716d7ee125 PWD=/ LOGNAME=smb101 HOME=/root
LSCOLORS=rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:so=01;35:do=01;35:bd=40;33;01:cd=40;33;01:or=40;31;01:mi=00:su=37;41:sg=3
0;43:ca=30;41:tw=30;42:ow=34;42:st=37;44:ex=01;32:.tar=01;31:.tgz=01;31:.arc=01;31:.arj=01;31:.taz=01;31:.lha=01;31:.lz4=01;31:.lz
h=01;31:.lzma=01;31:.tlz=01;31:.txz=01;31:.tzo=01;31:.t7z=01;31:.zip=01;31:.z=01;31:.dz=01;31:.gz=01;31:.lrz=01;31:.lz=01;31:.lzo=0
1;31:.xz=01;31:.zst=01;31:.tzst=01;31:.bz2=01;31:.bz=01;31:.tbz=01;31:.tbz2=01;31:.tz=01;31:.deb=01;31:.rpm=01;31:.jar=01;31:.war=
01;31:.ear=01;31:.sar=01;31:.rar=01;31:.alz=01;31:.ace=01;31:.zoo=01;31:.cpio=01;31:.7z=01;31:.rz=01;31:.cab=01;31:.wim=01;31:.sw
m=01;31:.dwm=01;31:.esd=01;31:.jpg=01;35:.jpeg=01;35:.mjpg=01;35:.mjpeg=01;35:.gif=01;35:.bmp=01;35:.pbm=01;35:.pgm=01;35:.
ppm=01;35:.tga=01;35:.xbm=01;35:.xpm=01;35:.tif=01;35:.tiff=01;35:.png=01;35:.svg=01;35:.svgz=01;35:.mng=01;35:.pcx=01;35:.mo
v=01;35:.mpg=01;35:.mpeg=01;35:.m2v=01;35:.mkv=01;35:.webm=01;35:.ogm=01;35:.mp4=01;35:.m4v=01;35:.mp4v=01;35:.vob=01;
35:.qt=01;35:.nuv=01;35:.wmv=01;35:.asf=01;35:.rm=01;35:.rmvb=01;35:.flc=01;35:.avi=01;35:.fli=01;35:.flv=01;35:.gl=01;35:.dl=01;3
5:.xcf=01;35:.xwd=01;35:.yuv=01;35:.cgm=01;35:.emf=01;35:.ogv=01;35:.ogx=01;35:.aac=00;36:.au=00;36:.flac=00;36:.m4a=00;36:.mi
d=00;36:.midi=00;36:.mka=00;36:.mp3=00;36:.mpc=00;36:.ogg=00;36:.ra=00;36:.wav=00;36:.oga=00;36:.opus=00;36:.spx=00;36:*.xsp
f=00;36: TERM=xterm SHLVL=1 PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin =/usr/bin/env </code> * Création d’une
variable d’environnement qui n’existe pas sur l’hôte pour spécifier au conteneur l’adresse IP 192.168.1.200 d’un service Web nécessaire
pour la réalisation de sa tâche <code shell> $ docker run -e=IPAPIWEB=192.168.1.200 ubuntu env
PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin HOSTNAME=2352eb733166 IPAPIWEB=192.168.1.200 HOME=/root </code> *
Modification du hostname au démarrage du conteneur <code shell> $ docker run -it -h idefix ubuntu root@idefix:/# </code> ====
Quelques autres commandes de Docker ==== === Supprimer un conteneur === <code shell> docker rm [identifiant ou nom du
conteneur] </code> === Faire le ménage === La commande system et sa sous-commande prune permettant de réaliser le ménage dans
les conteneurs arrêtés, les images orphelines et d’autres ressources a priori non utilisées, sans supprimer les images. <code shell> docker
system prune </code> === Supprimer une image === Les conteneurs qui utilisent cette image doivent au préalable avoir été supprimés.
Le paramètre -f force cependant la suppression si cela n’est pas le cas. <code shell> docker rmi [identifiant ou nom de l’image] </code>
=== Lancer un conteneur avec un nom donné === <code shell> docker run –name=[nom fourni] [image] </code> === Lancer un
conteneur en mode détaché === Lors du lancement d’un conteneur, on perd l’accès à la console du serveur Ubuntu. Cette commande
permet de lancer le conteneur et de retrouver le shell du serveur sans arrêter le conteneur. <code shell> btssio@ubuntudocker:~$ docker
run -i -t -d ubuntu e70a11313849c4c2ce8beebe72935368b909759ab5eb4e2c2f1bcf715c1a2bd1 btssio@ubuntudocker:~$ docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES e70a11313849 ubuntu “/bin/bash” 3 seconds ago Up 2 s gallant_kilby
</code> === Se connecter à un conteneur lancé === Pour accéder ensuite à ce conteneur on utilise la commande attach avec l’identifiant
ou le nom du conteneur : <code shell> btssio@ubuntudocker:~/Documents/lab_exercice$ docker attach e70a11313849

2026/02/07 16:27 5/5 Activité : découvrir Docker

Les cours du BTS SIO - /

root@e70a11313849:/# </code> === Arrêter un conteneur === <code shell> docker stop [conteneur] </code> === Démarrer un
conteneur arrêté === <code shell> docker start [conteneur] </code>

Docker propose également un guide de découverte de Docker (en anglais) avec son ordinateur personnel ou bien en
ligne dans un lab (Cloud) : https://www.docker.com/101-tutorial

Autres ressources :

https://devopssec.fr/article/cours-complet-apprendre-technologie-docker

===== Mémento Docker =====

Mémento Docker :
https://www.digitalocean.com/community/tutorials/how-to-remove-docker-images-containers-and-volumes-fr

====== Retour Accueil Docker ====== * Docker

From:
/ - Les cours du BTS SIO

Permanent link:
/doku.php/reseau/docker/utiliserdocker?rev=1733691513

Last update: 2024/12/08 21:58

https://www.docker.com/101-tutorial
https://devopssec.fr/article/cours-complet-apprendre-technologie-docker
https://www.digitalocean.com/community/tutorials/how-to-remove-docker-images-containers-and-volumes-fr
/doku.php/reseau/docker/accueil
/doku.php/reseau/docker/utiliserdocker?rev=1733691513

	Activité : découvrir Docker
	Un premier conteneur
	Lancement sans option d’un conteneur

	Afficher les images Docker présentes sur la machine
	Lister les conteneurs actifs
	Lister tous les conteneurs y compris ceux qui sont inactifs

