
2026/01/16 21:33 1/10 Configurer une authentification SSH avec certificat

Les cours du BTS SIO - /

Configurer une authentification SSH avec certificat

Resources

http://www.ixany.org/fr/articles/presentation-et-utilisation-des-certificats-ssh/
https://www.ssh.com/
http://tech.ciges.net/blog/openssh-with-x509-certificates-how-to/
https://linux-attitude.fr/post/certificats-x509-pour-ssh
https://ichi.pro/fr/comment-utiliser-les-certificats-ssh-pour-un-acces-serveur-evolutif-securise-et-plus-transparent-125389551658519

Principes

L'utilisation de certificats permet de garantir l'identité du client et du serveur. OpenSSH permet de gérer des certificat dans un format
spécifique. Ce ne sont pas des certificats x509.

OpenSSH gère des certificats dans un format spécifique qui ne sont pas des certificats x509 utilisables avec SSL/TLS.

La clé publique des utilisateurs et des serveurs doit être signée par la clé privée d'une autorité de certification spécifique à OpenSSH.

Intérêt pour le client : la clé publique de la CA permet de vérifier le certificat présenté par le serveur. Il n'est pas nécessaire de
renseigner le fichier know_hosts.
Intérêt pour le serveur : la clé publique du CA permet de vérifier le certificat présenté par le client sans avoir à renseigner le
fichier authorized_keys.

Configuration du serveur SSH (OpenSSH)

Le fichier de configuration du service SSH est /etc/ssh/sshd_config.

Lors de l'installation du serveur SSH ses clés privées et publiques sont générées sous plusieurs formats dans le dossier /etc/ssh, pour
garder une comptabilité avec des clients plus anciens :

format dsa : ssh_host_dsa_key et ssh_host_dsa_key.pub
format rsa : ssh_host_rsa_key et ssh_host_rsa_key.pub
format ed25519 : ssh_host_ed25519_key et ssh_host_ed25519_key.pub
format ecdsa : ssh_host_ecdsa_key et ssh_host_ecdsa_key.pub ; ce format autorise l'écha,nge de clé ECDH Elliptic Curve Diffie
Hellman).

Dans le fichier de configuration du service SSH /etc/ssh/sshd_config, il est possible de fixer le type de clé côté serveur
avec la directive HostKey.

Exemple :

HostKey /etc/ssh/ssh_host_rsa_key

La vérification de la configuration du service SSH se fait avec la commande suivante :

/usr/sbin/sshd -d

Les éléments nécessaires

la clé privée pour signer les certificats OpenSSH ;
la clé publique du client et son identité du client ;
ou la clé publique du serveur pour un certificat serveur et son identité.

http://www.ixany.org/fr/articles/presentation-et-utilisation-des-certificats-ssh/
https://www.ssh.com/
http://tech.ciges.net/blog/openssh-with-x509-certificates-how-to/
https://linux-attitude.fr/post/certificats-x509-pour-ssh
https://ichi.pro/fr/comment-utiliser-les-certificats-ssh-pour-un-acces-serveur-evolutif-securise-et-plus-transparent-125389551658519

Last update: 2025/07/02 12:47 reseau:debian:clesshcertificat /doku.php/reseau/debian/clesshcertificat

/ Printed on 2026/01/16 21:33

Génération de la paire de clés privée /publique de la CA OpenSSH

ssh-keygen permet de générer un paire de clés privée / publique pour gérer la CA OpenSSH. Les clés seront enregistrées dans le dossier
/etc/ssh accessible uniquement avec les droits root.

Création en précisant :

(facultatif) le type de clé (rsa, dsa, ecdsa ou ed25519) avec le paramètre -t (par défaut le type est rsa) ;
(facultatif) la longueur de la clé avec le paramètre -b. Par défaut la longueur est de 2048 bits.
le nom des clés et le dossier où elles seront enregistrées avce le paramètre -f ;
un commentaire avec le paramètre -C ;
la passphrase avec le paramètre -N :

Création de la paire de clé de type ecdsa pour la CA OpenSSH dans le dossier /etc/ssh :

ssh-keygen -f /etc/ssh/ssh_ca -C "CA for SSH" -N "Sio1234*"

La clé privée est enregistrée sous le nom ssh_ca ;
La clé publique est enregistrée sous le nom ssh_ca.pub ;

Une passphrase permet de protéger la clé privée.

Format d’une clé publique ssh

Une clé publique SSH est une chaîne de texte en une seule ligne, avec plusieurs parties distinctes : <type> <clé encodée en base64>
<commentaire facultatif>

Type : Spécifie l'algorithme utilisé pour générer la clé. Par exemple :

ssh-rsa : clé utilisant l'algorithme RSA.
ecdsa-sha2-nistp256 : clé ECDSA avec une courbe elliptique.
ssh-ed25519 : clé basée sur l'algorithme Ed25519.

Clé encodée en base64 : chaîne encodée en Base64 représentant la clé publique.

Commentaire facultatif : information pour identifier la clé : nom d'utilisateur et l'hôte depuis lequel la clé a été générée.

Génération d'un certificat pour un serveur

La clé privée de la CA (/etc/ssh/ssh_ca) va signer la clé publique du serveur (clé générée automatiquement lors de l'installation du service
SSH). Pour cet exemple c'est la clé ecdsa qui sera signée.
Utilisation des paramètres suivants :

paramètre -s pour indiquer la clé privée de la CA qui va signer le certificat du serveur :
paramètre -I pour indiquer l'identifiant du certificat (Key ID).
* paramètre -h pour indiquer un certificat serveur
paramètre -z pour indiquer u numéro de série
paramètre -n pour indiquer un ou plusieurs nom/@ip de machines

$ ssh-keygen -s /etc/ssh/ssh_ca -I SSH-SERVEUR1-CERT \
-h -z 1234 \
-n localhost,10.0.0.102,www.serveurweb.fr \
/etc/ssh/ssh_host_ecdsa_key.pub

Le certificat Serveur /etc/ssh/ssh_host_ecdsa_key-cert.pub a été créé.

Le paramètre -L permet d'afficher le contenu du certificat :

ssh-keygen -L -f /etc/ssh/ssh_host_ecdsa_key-cert.pub
/etc/ssh/ssh_host_ecdsa_key-cert.pub:
 Type: ecdsa-sha2-nistp256-cert-v01@openssh.com host certificate
 Public key: ECDSA-CERT SHA256:gncg0I1AzJaivFQL5mA7V2H/5c8CSY4kZEdyuCK6ySQ
 Signing CA: ECDSA SHA256:t225t0te+LcQXCo1og6TYAnD2PIQ/vnMo/nWL64bIaY (using ecdsa-sha2-nistp256)
 Key ID: "SSH-SERVEUR1-CERT"

2026/01/16 21:33 3/10 Configurer une authentification SSH avec certificat

Les cours du BTS SIO - /

 Serial: 1234
 Valid: forever
 Principals:
 localhost
 10.0.0.102
 www.serveurweb.fr
 Critical Options: (none)
 Extensions: (none)

Commentaires :

le champ Type indique un certificat serveur host ;
l'identifiant Key ID est SSH-SERVEUR1-CERT ;
il n'y a pas d'extensions autorisant telle ou telle fonctionnalité car ne s'applique qu'à un certificat utilisateur
l'empreinte de la clé publique Public key est différente de celle qui a signée le certificat Signing CA
Il n'y a pas de date de validité.

Le serveur doit être configuré pour présenter ce certificat à tout client qui voudra se connecter.

Pour cela modifier le fichier du service SSH /etc/ssh/sshd_config pour

ajouter la directive HostCertificate :
indiquer également d'utiliser la clé privée ssh_hostecdsakey avec la directive HostKey :

utiliser un certificat serveur
HostKey /etc/ssh/ssh_host_ecdsa_key
HostCertificate /etc/ssh/ssh_host_rsa_key-cert.pub

Le lancement en mode debug du service ssh montre le chargement de la clé privée et du certificat :

root@Serveur1:~# /usr/sbin/sshd -d
...
debug1: private host key #0: ecdsa-sha2-nistp256 SHA256:gncg0I1AzJaivFQL5mA7V2H/5c8CSY4kZEdyuCK6ySQ
debug1: host certificate: #0 type 6 ECDSA-CERT
...

Redémarre le service SSH sur le serveur

systemctl restart ssh

Il est maintenant possible pour un client SSH de se connecter à un serveur présentant un certificat signé par la CA :

sans devoir valider l'identité du serveur ;
sans enregistrement d'une nouvelle ligne dans le fichier known_hosts.

Pour indiquer qu'un serveur particulier, présentant un certificat sign par la CA OpenSSH n'est plus de confiance, il suffit
d'ajouter dans le fichier known_hosts une ligne avec le marqueur @revoked associé à la clé publique du serveur.

Mise en place du certificat serveur au niveau du client

La configuration du client permet à celui-ci de faire confiance à n'importe quel serveur qui présente un certificat signé par une CA
préalablement définie.

Pour cela, le fichier ~/.ssh/known_hosts doit contenir une ligne avec la directive @cert-authority et la clé publique de la CA qui est
reconnue.

Le format d'une ligne est le suivant avec des quatre types d'information séparés par des espaces :

markers (optional),
hostnames (une liste de valeurs séparées par des virgules, avec utilisation possibles des caractères jocker * et ? ;
public key (clé publique de la CA),
comment (commentaires)

Récupérez la clé publique de la CA et ajoutez-là dans le fichier know_hosts puis compétez la ligne ajoutée pour ajouter les paramètres

Last update: 2025/07/02 12:47 reseau:debian:clesshcertificat /doku.php/reseau/debian/clesshcertificat

/ Printed on 2026/01/16 21:33

nécessaires (directive @cert-authority, hostnames). Cela devfraot resmebler à cela :

@cert-authority 10.* ecdsa-sha2-nistp256
AAAAE2VjZHNhLXNoYTItbmlzdHAyNTYAAAAIbmlzdHAyNTYAAABBBPsbCPdkmh9SXN2b/WwU9dqQi7z+0W5YY3SblMHdIS7gkQ2/YcFf
Cs/f56cwIDc2pkNmuVoFDJPo2gg5khqYtDg= CA for SSH

En se connectant en mode verbeux, vous visualisez que le certifivatt présenté a bien été validé :

debug1: Server host certificate: ecdsa-sha2-nistp256-cert-v01@openssh.com
SHA256:gncg0I1AzJaivFQL5mA7V2H/5c8CSY4kZEdyuCK6ySQ, serial 1234 ID "SSH-SERVEUR1-CERT" CA ecdsa-sha2-
nistp256 SHA256:t225t0te+LcQXCo1og6TYAnD2PIQ/vnMo/nWL64bIaY valid forever
debug1: load_hostkeys: fopen /home/charles/.ssh/known_hosts2: No such file or directory
debug1: load_hostkeys: fopen /etc/ssh/ssh_known_hosts: No such file or directory
debug1: load_hostkeys: fopen /etc/ssh/ssh_known_hosts2: No such file or directory
debug1: Host '10.0.0.102' is known and matches the ECDSA-CERT host certificate.
debug1: Found CA key in /home/charles/.ssh/known_hosts:1

Génération d'un certificat utilisateur autosigné

$ ssh-keygen -s id_rsa -I charles-CERT id

Le paramètre -L permet d'afficher le contenu du certificat :

ssh-keygen -L -f id_rsa-cert.pub
id_rsa-cert.pub:
 Type: ssh-rsa-cert-v01@openssh.com user certificate
 Public key: RSA-CERT SHA256:Dv79U+oPIbv5CGIiROMxM02479DZwaj3xOcYJKw1Bww
 Signing CA: RSA SHA256:Dv79U+oPIbv5CGIiROMxM02479DZwaj3xOcYJKw1Bww (using rsa-sha2-512)
 Key ID: "charles"
 Serial: 0
 Valid: forever
 Principals: (none)
 Critical Options: (none)
 Extensions:
 permit-X11-forwarding
 permit-agent-forwarding
 permit-port-forwarding
 permit-pty
 permit-user-rc

Commentaires :

le champ Type indique un certificat utilisateur user
l'identifiant Key ID est charles
l'empreinte de la clé publique Public key est la même que celle qui a signée le certificat Signing CA

Génération d'un certificat utilisateur signé par la CA OpenSSH

Génération du certificat utilisateur

Les certificats OpenSSH permettent d'ajouter :

des informations sur l'identité du propriétaire de la clé publique
et des contraintes de validité.

Pour signer un certificat avec ssh-keygen, deux paramètres au minimum sont nécessaires :

paramètre -s pour indiquer la clé privée qui va signer : sa propre clé privée ou celle de la CA OpenSSH
le paramètre -I pour indiquer l'identifiant du certificat (Key ID).

Il est cependant indispensable de préciser :

une ou plusieurs valeurs de principals avec le paramètre -n chaque principal est un nom d'utilisateur dotn on peut prendre
l'identité

2026/01/16 21:33 5/10 Configurer une authentification SSH avec certificat

Les cours du BTS SIO - /

Le nom du fichier de certificat est généré en ajoutant -cert.pub au nom de la clé publique. Sur le serveur ayant les clé de la CA OpenSSH,
signez la clé publique de l'utilisateur :

transférez la clé publique de l'utilisateur sur le serveur
signez la clé publique avec la clé privée de la CA /etc/ssh/ssh_c.

ssh-keygen -s /etc/ssh/ssh_ca -I CHARLES-CERT \
-z 1
-n charles
 id_rsa.pub

transférez le certificat sur le poste du client dans son dossier .ssh

Le paramètre -L permet d'afficher le contenu du certificat :

ssh-keygen -L -f /home/charles/id_ecdsa-cert.pub
/home/charles/id_ecdsa-cert.pub:
 Type: ecdsa-sha2-nistp256-cert-v01@openssh.com user certificate
 Public key: ECDSA-CERT SHA256:vq5uCGtqvFGK2CiBX07gtXvfZuGklvnrQ2IBqEoiuzA
 Signing CA: ECDSA SHA256:t225t0te+LcQXCo1og6TYAnD2PIQ/vnMo/nWL64bIaY (using ecdsa-sha2-nistp256)
 Key ID: "CHARLES-CERT"
 Serial: 1
 Valid: forever
 Principals:
 charles
 Critical Options: (none)
 Extensions:
 permit-X11-forwarding
 permit-agent-forwarding
 permit-port-forwarding
 permit-pty
 permit-user-rc

Commentaires :

le champ Pricipals indique le nom d'utilisateur dont qui sera présenté au serveur
l'identifiant Key ID est CHARLES-CERT
l'empreinte de la clé publique Public key est différente de celle qui a signée le certificat Signing CA

Validation d'un certificat de client SSH

Il y a plusieurs méthodes :

méthode globale qui s'applique à tous les utilisateurs ;
méthode personnalisée spécifique à un client ;
une combinaison de ces deux méthodes.

Validation généralisée de certificats

méthode à privilégier quand la majorité d'utilisateurs utilisent des certificats OpenSSH signés par une CA connue de
l'administrateur.
indication sur le serveur de la liste de ces clés de CA de confiance,
les utilisateurs

n'ont plus besoin de maintenir un fichier .ssh/authorized_keys ;
utilisent des certificats contenant un ou plusieurs principals ;
accèdent aux comptes utilisateurs présents dans la liste des principals de leur certificat.

Pour activer la validation généralisée des certificats, le fichier de configuration du serveur SSH /etc/ssh/sshd_config doit contenir la
directive TrustedUserCAKeys qui précise le nom du fichier contenant la liste des clef publique des CA OpenSSH.

TrustedUserCAKeys /etc/ssh/ssh_ca_keys

IMPORTANT : le certificat du client ne sera considéré que si sa liste de nom-clés (principal) contient le nom du compte
auquel il tente de se connecter.

SAUF si un fichier spécifique à chaque compte indique la liste des noms-clés acceptés. Directive AuthorizedPrincipalsFile
dans sshd_config

Last update: 2025/07/02 12:47 reseau:debian:clesshcertificat /doku.php/reseau/debian/clesshcertificat

/ Printed on 2026/01/16 21:33

Redémarrez ensuite le service SSH

L'utilisateur peut maintenant se connecter en SSH au serveur sans avoir au préalable fait renseigner sa clé publique dans le
fichier authorized_keys du serveur

Révocation globale de clés

Au niveau du serveur SSH, la révocation de clés publiques se fait à l'aide de la directive RevokedKeys en précisantle nom du fichier global
contenant la liste des clés qui doivent être refusées. Cela fonctionne pour toutes les clés publiques, même s'il n'y a pas de certificat associé
à la clé.

TrustedUserCAKeys /etc/ssh/ssh_ca_keys
RevokedKeys /etc/ssh/ssh_revoked_keys

Utilisation du fichier authorized_principals

Sur le serveur SSH, l'accès à un autre compte utilisateur que ceux listés dans les principals de son certificat est possible en utilisant la
directive AuthorizedPrincipalsFile dans le fichier de configuration du serveur SSH /etc/ssh/sshd_config :

AuthorizedPrincipalsFile .ssh/authorized_principals

Dans ce cas-là, le serveur vérifie qu'un nom de la liste des principals du certificat qu'on lui propose apparaît bien dans le fichier
.ssh/authorized_principals du compte cible.

Depuis le paragraphe 5.1, le certificat de l'utilisateur cb contientles valeurs cb , borelly et root . Il suffit donc d'indiquer une de ces 3 valeurs
dans le fichier authorizedprincipals ducompte auquel on désire accéder. Le mode debug du serveur SSH nous indique que ce fichier est
maintenant bien analysé en premier lieu quand l'utilisateur cb tente de se connecter sur le compte de root avec ce certificat : root@pccb
~# echo borelly > /root/.ssh/authorizedprincipals root@pccb ~# /usr/sbin/sshd -d … Failed publickey

Mise en place côté client

Quand un client accepte pour la première fois la connexion à un serveur, il enregistre dans le fichier ~/.ssh/know_hosts une ligne avec la
clé publique du serveur.

Lors d'une prochaine connexion, la clé présentée par le serveur sera comparée à celle déjà enregistrée afin d'éviter les attaques du type
homme du milieu.

Le client gère la liste des serveurs connus dans son fichier ~/.ssh/hnow_hosts :

il y a une ligne par serveur sur lequel le client a accepté de se connecter ;
chaque ligne contient l'adresse IP ou le nom DNS du serveur et la clé publique du serveur ;
le fichier peut être haché pour masquer l'adresse IP/nom DNS ;
la commande suivante permet de rechercher dans la liste une clé particulière

ssh-keygen -F @IP

le paramètre -R permet d'effacer une clé et le paramètre -r permet d'afficher l'empreinte SSHFP (SSH FingerPrint).

Le client doit faire signer sa clé publique pour obtenir un certificat qui doit être placé dans le même répertoire que sa clé privé et publique.

cp client_key ~/.ssh/
cp client_cert.pub ~/.ssh/

Les permissions doivent être correctes :

chmod 600 ~/.ssh/client_key
chmod 644 ~/.ssh/client_cert.pub

Lors d’une connexion avec la clé privée, le certificat sera automatiquement présenté au serveur.

Le client ssh doit seulement indique quelle clé privée utiliser avec l’option -i

ssh -i ~/.ssh/client_key nomDNSserveur

2026/01/16 21:33 7/10 Configurer une authentification SSH avec certificat

Les cours du BTS SIO - /

Ainsi même s’il n’y a pas de clé publique client dans authorized_keys, l’authentification se fait. L’option -v permet de voir l’utilisation du
certificat

ssh -v -i ~/.ssh/client_key nomDNSserveur

Vous pouvez utiliser aussi le fichier de configuration du client ssh

Host <nom_du_serveur>
 HostName <adresse_du_serveur>
 User <nom_utilisateur>
 IdentityFile ~/.ssh/client_key
 CertificateFile ~/.ssh/client_cert.pub

Les commandes utiles

obtenir la clé publique à partir de la clé privée d'une identité utilisateur au format openSSH

$ ssh-keygen -y -f utilisateur-identite.pem > id_rsa.pub

Obtenir la clé publique à partir du certificat de l’utilisateur au format openSSH pour une connexion ssh
Extraire la clé publique du certificat de l’utilisteur

$ openssl x509 -in charles-cert.pem -pubkey –noout > id_rsa.pem

noout permet d’avoir uniquement la clé publique sans le certificat

Convertir la clé publique du format PEM au format openssh

$ ssh-keygen -i -m PKCS8 -f id_rsa.pem > id_rsa.pub

Obtenir la clé publique de la CA du certificat de la CA au format openSSH pour une connexion ssh
Extraire la clé publique du certificat du CA

$ openssl x509 -in pkicub-cert.pem -pubkey –noout > ca.pem

* Convertir la clé publique du format PEM au format openssh

$ ssh-keygen -f ca.pem > ca.pub

Vérifiez les journaux SSH pour voir si le certificat est utilisé correctement :

journalctl -u ssh

Sur le clien, ajoutez l’option -v pour obtenir plus de détails sur le processus de connexion :

ssh -v <nom_du_serveur>

Facilité d’utilisation avec plusieurs serveurs en faisant confiance à la même CA en ajoutant la clé publique de la CA à
~/.ssh/known_hosts en tant qu’autorité de certification :

echo "@cert-authority *.example.com ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQE..." >> ~/.ssh/known_hosts

Cela permet au client de faire confiance à tous les serveurs avec des certificats signés par cette CA.

Visualiser le contenu d'un certificat

openssl x509 -in filename.pem -text –noout

-noout pour ne pas afficher en base64 qui permet d’encode des données binaires ASCII

emetteur du certificat : -issuer

openssl x509 -in filename.pem -issuer –noout

Sujet du certificat : -subject

openssl x509 -in filename.pem -subject –noout

Empreinte digitale : -fingeprint

openssl x509 -in filename.pem -fingerprint –noout

Last update: 2025/07/02 12:47 reseau:debian:clesshcertificat /doku.php/reseau/debian/clesshcertificat

/ Printed on 2026/01/16 21:33

Clé publique : -pubkey

openssl x509 -in filename.pem –pubkey -noout –out id_rsa.pub

Notes

Configurer une authentification SSH avec des certificats (et non simplement des clés publiques/privées) est une méthode avancée qui
repose sur un serveur d'autorité de certification (CA) pour signer les clés SSH. Voici un guide étape par étape pour mettre cela en place :

Générer une paire de clés pour l'utilisateur Sur la machine client (utilisateur) :1.

ssh-keygen -t rsa -b 4096 -f ~/.ssh/id_rsa_cert

Cela crée :

idrsacert (clé privée)
idrsacert.pub (clé publique)

2. Créer une autorité de certification (CA) Sur la machine administrateur (ou serveur CA) :

ssh-keygen -f /etc/ssh/ssh_ca -C "CA for SSH" -N ""

Cela crée :

/etc/ssh/sshca (clé privée de la CA) * /etc/ssh/sshca.pub (clé publique de la CA)

3. Signer la clé publique de l'utilisateur Toujours sur la machine CA :

ssh-keygen -s /etc/ssh/ssh_ca -I user_cert -n nom_utilisateur -V +52w ~/.ssh/id_rsa_cert.pub

-I : identifiant du certificat
-n : nom d'utilisateur autorisé
-V : durée de validité (ici 52 semaines)

Cela génère un fichier idrsacert-cert.pub.

Visualiser le contenu du certificat :

ssh-keygen -L -f id_rsa_cert.pub

Configurer le serveur SSH pour accepter les certificats Sur le serveur SSH (où l'utilisateur veut se connecter), ajoutez dans1.
/etc/ssh/sshd_config :

TrustedUserCAKeys /etc/ssh/ssh_ca.pub

Puis redémarrez le service SSH :

sudo systemctl restart sshd

Configurer le client SSH Sur la machine client, dans ~/.ssh/config :1.

Host monserveur
 HostName monserveur.exemple.com
 User nom_utilisateur
 IdentityFile ~/.ssh/id_rsa_cert
 CertificateFile ~/.ssh/id_rsa_cert-cert.pub

Connexion1.

ssh monserveur

Script Bash automatisé pour configurer une authentification SSH avec des certificats :

Ce que fait le script :

Génère une paire de clés RSA pour l'utilisateur.
Crée une autorité de certification (CA) SSH.
Signe la clé publique de l'utilisateur avec la CA.
Configure le serveur SSH pour faire confiance à la CA.
Crée un fichier ~/.ssh/config pour simplifier la connexion.

2026/01/16 21:33 9/10 Configurer une authentification SSH avec certificat

Les cours du BTS SIO - /

Utilisation :

Télécharge le script.
Rendre exécutable :

chmod +x configurer_authentification_ssh.sh

contenu du script : <code> #!/bin/bash

Script d'automatisation de l'authentification SSH avec certificat

s # À exécuter avec les droits root ou sudo

=== Étape 1 : Générer une paire de clés pour l'utilisateur
===

echo “[1/5] Génération de la paire de clés utilisateur…” USERKEYDIR=“$HOME/.ssh” USERKEYNAME=“idrsacert” mkdir -p “$USERKEYDIR”
ssh-keygen -t rsa -b 4096 -f “$USERKEYDIR/$USERKEYNAME” -N “”

=== Étape 2 : Créer une autorité de certification (CA) ===

echo “[2/5] Création de l'autorité de certification…” CADIR=“/etc/ssh” CAKEYNAME=“sshca” sudo ssh-keygen -f “$CADIR/$CAKEY_NAME” -C
“CA for SSH” -N “”

=== Étape 3 : Signer la clé publique de l'utilisateur ===

echo “[3/5] Signature de la clé publique utilisateur…” CERTID=“usercert” USERNAME=“$(whoami)” VALIDITY=“+52w” sudo ssh-keygen -s
“$CADIR/$CAKEYNAME” -I “$CERTID” -n “$USERNAME” -V “$VALIDITY” “$USERKEYDIR/$USERKEYNAME.pub”

=== Étape 4 : Configurer le serveur SSH pour accepter les
certificats ===

echo “[4/5] Configuration du serveur SSH…” sudo bash -c “echo 'TrustedUserCAKeys $CADIR/$CAKEYNAME.pub' » /etc/ssh/sshdconfig” sudo
systemctl restart sshd

=== Étape 5 : Créer un fichier de configuration SSH côté
client ===

echo “[5/5] Création du fichier de configuration SSH client…” CONFIGFILE=“$USERKEYDIR/config” SERVERALIAS=“monserveur”
SERVER_HOST=“monserveur.exemple.com”

cat «EOF

> "$CONFIG_FILE"

H

ost $SERVERALIAS HostName $SERVERHOST

 User $USERNAME
 IdentityFile $USER_KEY_DIR/$USER_KEY_NAME

Last update: 2025/07/02 12:47 reseau:debian:clesshcertificat /doku.php/reseau/debian/clesshcertificat

/ Printed on 2026/01/16 21:33

 CertificateFile $USER_KEY_DIR/${USER_KEY_NAME}-cert.pub

EOF

chmod 600 “$CONFIG_FILE”

echo “ Configuration terminée. Vous pouvez maintenant vous connecter avec : ssh $SERVER_ALIAS”

</code>

From:
/ - Les cours du BTS SIO

Permanent link:
/doku.php/reseau/debian/clesshcertificat

Last update: 2025/07/02 12:47

/doku.php/reseau/debian/clesshcertificat

	Configurer une authentification SSH avec certificat
	Resources
	Principes
	Configuration du serveur SSH (OpenSSH)
	Les éléments nécessaires
	Génération de la paire de clés privée /publique de la CA OpenSSH
	Format d’une clé publique ssh
	Génération d'un certificat pour un serveur
	Mise en place du certificat serveur au niveau du client

	Génération d'un certificat utilisateur autosigné
	Génération d'un certificat utilisateur signé par la CA OpenSSH
	Génération du certificat utilisateur
	Validation d'un certificat de client SSH
	Validation généralisée de certificats
	Révocation globale de clés
	Utilisation du fichier authorized_principals

	Mise en place côté client
	Les commandes utiles
	Notes
	Script d'automatisation de l'authentification SSH avec certificat

	=== Étape 1 : Générer une paire de clés pour l'utilisateur ===
	=== Étape 2 : Créer une autorité de certification (CA) ===
	=== Étape 3 : Signer la clé publique de l'utilisateur ===
	=== Étape 4 : Configurer le serveur SSH pour accepter les certificats ===
	=== Étape 5 : Créer un fichier de configuration SSH côté client ===

