2026/01/30 04:30 1/2 Raspberry : un websocket pour recevoir et envoyer des messages en méme temps

Raspberry : un websocket pour recevoir et envoyer des
messages en méme temps

Le premier programme de Websocket serveur en python :

e écoutait tout d'abord le message envoyé par le client (la page html) qui se connecte,
e avant d'envoyer le message de bienvenu (Bonjour).

Pour, a la fois recevoir et envoyer des messages sur la méme connexion, on combine les deux fonctions send() et recv() en les
faisant s'exécuter dans des taches paralléles :

#!/usr/bin/env python3
asyncio

websockets

Gestion de 1l'envoi des messages du serveur au client

async gestion envoi message(websocket
i
boucle infinie pour envoyer toutes les secondes un message ;
True:
await websocket.send("Bonjour {}".format(nb
i=1+

await asyncio.sleep

Gestion des messages recus du client
async gestion reception message(websocket
True:
reception du message d'un client
message = await websocket.recv
message

fonction lancee a chaque connexion d'un client
async echange(websocket,path): # définir la fonction comme asynchrone
#envoyer des messages en paralléle
envoyer = asyncio.ensure future(gestion envoi message(websocket
#recevoir message en paralléele
recevoir = asyncio.ensure future(gestion reception message(websocket
termine, attente = await asyncio.wait
envoyer, recevoir
return_when = asyncio.FIRST COMPLETED

Definir la fonction qui sera appelee par le serveur a la connexion d'un client
lancement serveur = websockets.serve(echange, '10.3.141.1"

Creation de la boucle d'evenement (event loop)

loop = asyncio.get event loop

loop.run until complete(lancement serveur

loop.run_forever

loop.close

e pour lancer le serveur ouvrez le terminal et lancez I'exéuction du programme python : <code shell> $ python3 serveur.py </code>
Programme javascript du client

Dans la page Web HTML :

o |a balise %%%% affiche les messages envoyés toutes les secondes par le serveur, * un bouton HTML est ajouté pour
déclencher a la demande I'envoi d'un message au serveur. <code html> <!DOCTYPE html> <html> <head> <meta
charset=“UTF-8"> </head> <body> En attente d'un message du serveur
 <input type=“button” name=“envoi”
id="envoi” value="“Envoyer message”/> <script> selectionner la balise avec son id var affichemessage =
document.getElementByld('messagerecu’); creation du websocket client vers le websocket serveur du Raspnerry var
ws = new WebSocket(“ws:10.3.141.1:5678/”); ws.onopen = function (event) { ws.send(“J'envoie un premier message
au serveur.”); }; ws.onmessage = function (event) { affiche le message recu dans la balise
affichemessage.innerHTML = event.data;

}; Ajout d'un gestionnaire d'événement sur le bouton var envoi = document.getElementByld('envoi')
envoi.addEventListener('click',envoyerMessage); var numeroMessage = 1;

Les cours du BTS SIO -/

Last update: 2018/05/03 18:58 isn:raspberry_websocket2 /doku.php/isn/raspberry_websocket2

fonction qui envoie un message au serveur function envoyerMessage() { ws.send(“J'envoie message ” +
numeroMessage + “ au serveur.”); numeroMessage += 1; } </script> </body> </html> </code>

Vous pouvez a la fois :

© envoyer un message au serveur
o et recevoir en méme temps un message du serveur

Pour visualiser I'envoi et la réception simultanés des messages, cliquez sur le bouton de la page et observez
I'affichage du print dans le terminal du Raspberry

===== Envoyer plusieurs message en méme temps ===== || peut étre utile d'envoyer en méme temps plusieurs messages
et non les uns a la suite des autres. C'est le cas par exemple pour : * faire avancer la voiture et, * faire tourner en méme temps
les roues. Dans la fonction du programme serveur qui traite de la réception des message vous pouvez lancer des taches
paralleles de la maniere suivante : <code python> async def gestionreceptionmessage(websocket): while True: # reception du
messsage d'un client message = await websocket.recv() print(message)

lancement de la tache qui gere le deplacement avant/arriere de la voiture
asyncio.geteventloop().createtask(deplacement(message)) # lancement de la tache qui gere la direction droite ou gauche
asyncio.geteventloop().createtask(direction(message)) </code> Il reste a écrire les fonctions correspondantes deplacement() et
direction() qui doivent analyser le contenu du message pour savoir le sens du déplacement (avant ou arriere) ainsi que la
direction a prendre (droite ou gauche. ==== Les activités ... ====

Je reviens a la liste des activités.

From:
/ - Les cours du BTS SIO

Permanent link:
/doku.php/isn/raspberry_websocket2

Last update: 2018/05/03 18:58

/ Printed on 2026/01/30 04:30

/doku.php/isn/accueil
/doku.php/isn/raspberry_websocket2

	Raspberry : un websocket pour recevoir et envoyer des messages en même temps
	Programme javascript du client

