2026/01/28 00:13 1/2 Raspberry : premier websocket client et serveur

Raspberry : premier websocket client et serveur

Le websocket serveur

Au niveau du Raspberry, le Websocket serveur est créé avec le langage Python et nécessite une programmation asynchrone des
échanges de messages entre le client et le serveur. Le module asyncio est donc nécessaire pour gérer un websocket en Python.

Pour installer pip3

$ sudo apt install python3-pip

Installation du module python websocket

e lancez un terminal et puis installez le module websocket en utilisant le gestionnaire de paquets Python3 pip3 :

$ pip3 install websockets

Programme python de base du serveur

Le websocket serveur doit étre en permanence en attente des connexions clientes en précisant :

e quel traitement faire dés qu'il y a une connexion client en précisant la fonction a exécuter,
e et préciser I'adresse IP et le port d'écoute.

Voici l'instruction de base de la création d'un websocket serveur pour le Rapsberry :

lancement serveur = websockets.serve(echange, '10.3.141.1"

Explications : \ * le premier paramétre est la fonction qui sera exécutée a chaque connexion cliente. Comme
cette fonction ne doit pas étre exécutée maintenant, on ne met pas de parenthéses. * I'adresse IP est celle du
point d'acces Wifi du Raspberry ; le choix du port est libre du moment que la valeur ne soir pas celle d'un port
réservé a des services réseaux existant. Ici le port 5678 est utilisé. Liste des ports réseaux :
http://www.frameip.com/liste-des-ports-tcp-udp/ </WRAP> * envoyer des messages <code python> await
websocket.send(“Message a envoyer.”) </code>

Le mot clé await, en association avec le mot clé async permet de ne pas bloquer le reste du programme
le temps du traitement de I'instruction

* recevoir des messages <code python> messagerecu = await websocket.recv() </code> Voici un premier programme
serveur.py avec |'utilisation d'une boucle d'événement. Dés g'une connexion est établie, ce serveur envoie le message
Bonjour :

<code python> #!/usr/bin/env python3 import asyncio import websockets # Definir |la fonction qui sera appelee par le
serveur a la connexion d'un client async def echange(websocket,path): # recevoir un message ; messagerecu = await
websocket.recv() print(messagerecu) # envoyer un message await websocket.send(“Bonjour”) lancementserveur =
websockets.serve(echange,'10.3.141.1', 5678)

Creation de la boucle d'evenement (event loop) loop = asyncio.geteventloop() loop.rununtilcomplete(lancementserveur)
loop.run_forever() loop.close() </code> * pour lancer le serveur ouvrez le terminal et lancez I'exéuction du programme
python : <code shell> $ python3 serveur.py </code> ===== Programme javascript de base du client : la page index.html
===== Dans la page Web HTML, le script javascript va créer un client WebSocket en utilisant la bibliotheque (API)
WebSocket afin de communiquer avec le serveur WebSocket du Raspberry grace au protocole WebSocket. ====
Création d'un objet Websocket ==== L'instruction suivante permet d'ouvrir une connexion websocket vers le serveur :
<code javascript> var websockets = new WebSocket(“ws:10.3.141.1:5678/"); </code>

Explications :

Les cours du BTS SIO -/

http://www.frameip.com/liste-des-ports-tcp-udp/

Last update: 2018/09/30 20:39 isn:raspberry_websocketl /doku.php/isn/raspberry_websocketl

e |a variable websocket va contenir la connexion vers le serveur,
e |e protocole est ws suivi de I'adresse IP et du port d'écoute du serveur websocket.

==== Recevoir des données du serveur ==== Quand un message arrive du serveur, un événement (event) message
est envoyé a la fonction onmessage(). Pour utiliser ce message voici un exemple de code : <code javascript>
ws.onmessage = function (event) { afficheEtat(event.data); alert(event.data); }; </code> ==== Envoyer des données au
serveur ==== Les messages sont envoyés avec la fonction send(). Cependant, les connexions étant asynchrones, I'envoi
du premier message immédiatement apres la création de la connexion peut échouer. Il est alors préférable <code
javascript> ws.onopen = function (event) { ws.send("“J'envoie un premier message au serveur.”); }; </code> ==== Le
code complet de ce premier exemple ==== Voici le code HTML complet de ce premier exemple. Une balise %%%% est
utilisé pour visualiser la réponse du serveur : <code html> <!DOCTYPE html> <html> <head> <meta
charset="UTF-8"> </head> <body> En attente d'un message du serveur <script> selectionner la balise
 avec son id var affichemessage = document.getElementByld('messagerecu'); creation du websocket
client vers le websocket serveur du Raspnerry var ws = new WebSocket(“ws:10.3.141.1:5678/”); ws.onopen =
function (event) { ws.send(“J'envoie un premier message au serveur.”); }; ws.onmessage = function (event)
{ affiche le message recu dans la balise affichemessage.innerHTML = event.data;

}; </script> </body> </html> </code>

Les messages textuels échangés lors d'une connexion Websocket sont au format UTF-8.
==== Les activités ... ====

Je reviens a la liste des activités.

From: E!_— I'|‘::|_E

/ - Les cours du BTS SIO .

Permanent link:
/doku.php/isn/raspberry_websocketl

17
Last update: 2018/09/30 20:39 E

/ Printed on 2026/01/28 00:13

/doku.php/isn/accueil
/doku.php/isn/raspberry_websocket1

	Raspberry : premier websocket client et serveur
	Le websocket serveur
	Installation du module python websocket
	Programme python de base du serveur

