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Raspberry : utiliser la carte d'extension Motor Shield de SB
Components

Ressources

e Site de SB Component sur le Motot Shield : http://sb-components.co.uk/motor-shield.html
e schéma de la carte Motor Shield : motor_shield_schematic.pdf
e Information sur le Pont-H L293D : https://wiki.mchobby.be/index.php?title=Pont-H_L293D

Présentation

La carte d'extension Motor Shield pour Raspberry Pi permet de contréler :

e 4 moteurs a courant continu (DC) ou 2 moteurs pas a pas en utilisant le Pont-H de puissance moyenne (600mA) L293D qui a
les caractéristiques et les fonctionnalités suivantes :
o fournir un courant de sortie jusqu'a 1A et une tension maximale de 24 V,
o réaliser I'inversion de la polarisation aux bornes des moteurs,
o contrbler la vitesse du moteur a I'aide d'un signal PWM.
e 2 capteurs infrarouge (IR),
e un capteur a ultrasons.

Branchement des moteurs

GPIO utilisés pour les moteurs

Moteur |PWM|Avancer|Reculer
Moteur 1|17 GPIO 27 [GPIO 22
Moteur 2|25 |GPIO 24 |GPIO 23
Moteur 3|10  |GPIO 11 |GPIO 09
Moteur 4/12  |GPIO 07 [(GPIO 08

GPIO utilisés pour les fleches

Fleche |GPIO
Avancer|16
Reculer |19
Droite |13
Gauche (26

GPIO utilisés pour les capteurs

Capteur [Réception Emission
IR1 GPIO 04 (echo)
IR 2 GPIO 18 (echo)
Ultrasons|GPIO 6 (echo) |GPIO 5 (trigger)

Gérer les moteurs

La gestion d'un moteur nécessite :

e de créer un objet PWM pour gérer la puissance du moteur
o d'utiliser conjointement les deux GPIO pour définir le sens de rotation du moteur.

Exemple pour le moteur 1 :

RPi.GPIO GPIO
time

# Utiliser la numérotation électronique du GPIO
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GPIO0.setmode(GPIO.BCM

# définir les broches du GPIO a utiliser en sortie dans un tableau associatif
moteurl "PWM":17, "Avancer":27, "Reculer":22

# Configurer les broches en sortie
GPIO.setup(moteurl|"PwM" GPIO.OUT
GPIO.setup(moteurl|"Avancer" GPIO.OUT
GPIO.setup(moteurl|"Reculer" GPIO.OUT

# creation d'un objet PWM appelé moteurPWM en précisant le numero de broche (moteurl["PWM"]) et la
frequence (50Hz)
moteurPWM = GPIO.PWM(moteurl["PWM" 50

# demarrage du PWM avec un cycle a 0 : moteur arrété off
moteurPWM.start (0

# définir le rapport cyclique a 20 pour faire tourner le moteur 1 a 20% de sa puissance
moteurPWM.ChangeDutyCycle(50

# faire tourner le moteur dans un sens pendant 2 secondes
GPIO.output(moteurl|"Avancer"],6GPIO.HIGH
GPIO.output(moteurl|"Reculer"],GPIO.LOW

time.sleep(2

GPIO.output(moteurl|"Avancer"],6 GPIO.LOW
GPIO.output(moteurl|"Reculer"],6GPIO.LOW

# Arreter le PWM
moteurPWM. stop

# libérer le port du GPIO utilisé
GPIO.cleanup

Gérer les fleches a LED

Pour activer |'éclairage d'une fleche, il suffit :

e de définir les broches concernées en sortie,
o de mettre la sortie a I'état haut pour activer I'éclairage.

RPi.GPIO GPIO
time

# Utiliser la numerotation electronique du GPIO
GPIO.setmode (GPIO.BCM

# définir les broches du GPIO a utiliser en sortie dans un tableau associatif
fleche={"avancer":16, "reculer":19, "droite":13, "gauche":26

# Configurer les broches en sortie
GPIO0.setup(fleche|"avancer"],6GPIO.OUT
GPIO.setup(fleche|"reculer"],GPIO0.0UT
GPIO.setup(fleche["droite"|,GPIO.OUT
GPIO.setup(fleche|"gauche"],GPIO0.0UT

"Activer la fleche avancer pendant 1 seconde :"
GPIO.output(fleche["avancer"],GPIO.HIGH
time.sleep(1l
GPIO0.output(fleche|"avancer"],6 GPIO.LOW
time.sleep(1

"Activer la fleche reculer pendant 1 seconde :"
GPIO0.output(fleche["reculer"],GPIO.HIGH
time.sleep(1
GPIO.output(fleche["reculer"], GPIO.LOW
time.sleep(1

"Activer la fleche droite pendant 1 seconde :"
GPIO.output(fleche["droite"],GPIO.HIGH
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sleep(1
.output(fleche["droite"],GPIO.LOW
sleep(1
"Activer la fleche gauche pendant 1 seconde :"
.output(fleche["gauche"],GPIO.HIGH
sleep(1
output(fleche|"gauche"],6 GPIO.LOW
sleep(1l

# libérer les ports du GPIO utilises

GPIO.

cleanup

Gérer le capteur a ultrasons

principe

Un émetteur d’ultrasons (Tx) envoie un train d'ondes sonores (8 impulsions a 40kHz) qui se réfléchissent sur un obstacle et reviennent vers
un récepteur (Rx). Connaissant la vitesse du son dans I'air (environ 340 m/s) il suffit de diviser par 2 le temps mis par les ondes pour faire
I'aller-retour et calcule alors la distance de I'obstacle.

Pour en savoir plus :

Rx

T

e https://www.framboise314.fr/mesure-de-distance-par-ultrasons-avec-le-raspberry-pi/
e http://espace-raspberry-francais.fr/Composants/Mesure-de-distance-avec-HC-SR04-Raspberry-Francais/
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Pour mesurer la distance d'un obstacle on procéde de la maniére suivante :

e on envoie sur I'entrée Trig du capteur HC-SR04 un train d'onde pendant un tres bref instant de 10 micro secondes (0.00001 s),
o DES QUE LE TRAIN EST EMIS, I'entrée Echo délivre une tensions de 5 v
e dés que I'entrée Echo détecte le retour du train d'onde, I'entrée n'est plus a 5V.

RPi.GPIO GPIO
time

# Utiliser la numerotation electronique du GPIO
GPIO.setmode(GPIO.BCM

# définir les broches du GPIO a utiliser en sortie pour envoyer le train d'onde et en entrée pour la
réception
ultrason={"envoi":5, "echo":6

# Configurer les broches
GPIO.setup(ultrason|"envoi"],GPIO0.0UT
GPIO.setup(ultrason|"echo"],6GPIO.IN

# fonction qui retourne la distance d'un obtacle
distance
# generation du train d’ondes ultrasonores
GPIO.output(ultrason|"envoi" GPIO.HIGH
time.sleep(0.00001
GPIO.output(ultrason|"envoi" GPIO.LOW
start time.time

# boucler tant que l'entree n'est pas a l'etat haut
GPIO.input(ultrason|"echo" 0:

# enregistrement du temps de départ

debutImpulsion= time.time

# boucler tant que l'entree n'est pas revenue a un etat bas
GPIO.input(ultrason|"echo" g

# enregistre le temps quand l'entree n'est plus a l'état haut

finImpulsion time.time

# calcul de la distance en cm arrondie a l'entier
distance round( (finImpulsion - debutImpulsion) * 343*%100/2,1

# renvoyer la valeur de la distance
distance

# lancer la fonction distance() jusqu'a l'appui d'une touche
True:

# lancement de la fonction distance() et affichage du résultat obtenu
distance

# attendre 1 seconde avant de relancer la détermination de la distance
time.sleep(1

KeyboardInterrupt:
# arreter le programme

# libérer les ports du GPIO utilises
GPIO.cleanup

Les activités ...

Je reviens a la liste des activités.
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