2026/01/09 02:59 1/5 Raspberry : utiliser la carte d'extension Motor Shield de SB Components

Raspberry : utiliser la carte d'extension Motor Shield de SB
Components

Ressources

e Site de SB Component sur le Motot Shield : http://sb-components.co.uk/motor-shield.html
e schéma de la carte Motor Shield : motor_shield_schematic.pdf
e Information sur le Pont-H L293D : https://wiki.mchobby.be/index.php?title=Pont-H_L293D

Présentation

La carte d'extension Motor Shield pour Raspberry Pi permet de contréler :

e 4 moteurs a courant continu (DC) ou 2 moteurs pas a pas en utilisant le Pont-H de puissance moyenne (600mA) L293D qui a
les caractéristiques et les fonctionnalités suivantes :
o fournir un courant de sortie jusqu'a 1A et une tension maximale de 24 V,
o réaliser I'inversion de la polarisation aux bornes des moteurs,
o contrbler la vitesse du moteur a I'aide d'un signal PWM.
e 2 capteurs infrarouge (IR),
e un capteur a ultrasons.

Branchement des moteurs

GPIO utilisés pour les moteurs

Moteur |PWM|Avancer|Reculer
Moteur 1|17 GPIO 27 [GPIO 22
Moteur 2|25 |GPIO 24 |GPIO 23
Moteur 3|10 |GPIO 11 |GPIO 09
Moteur 4/12 |GPIO 07 [(GPIO 08

GPIO utilisés pour les fleches

Fleche |GPIO
Avancer|16
Reculer |19
Droite |13
Gauche (26

GPIO utilisés pour les capteurs

Capteur [Réception Emission
IR1 GPIO 04 (echo)
IR 2 GPIO 18 (echo)
Ultrasons|GPIO 6 (echo) |GPIO 5 (trigger)

Gérer les moteurs

La gestion d'un moteur nécessite :

e de créer un objet PWM pour gérer la puissance du moteur
o d'utiliser conjointement les deux GPIO pour définir le sens de rotation du moteur.

Exemple pour le moteur 1 :

RPi.GPIO GPIO
time

Utiliser la numérotation électronique du GPIO

Les cours du BTS SIO -/

http://sb-components.co.uk/motor-shield.html
/lib/exe/fetch.php/isn/motor_shield_schematic.pdf
https://wiki.mchobby.be/index.php?title=Pont-H_L293D

Last update: 2018/05/16 20:54 isn:raspberry_motorshield /doku.php/isn/raspberry_motorshield

GPIO0.setmode(GPIO.BCM

définir les broches du GPIO a utiliser en sortie dans un tableau associatif
moteurl "PWM":17, "Avancer":27, "Reculer":22

Configurer les broches en sortie
GPIO.setup(moteurl|"PwM" GPIO.OUT
GPIO.setup(moteurl|"Avancer" GPIO.OUT
GPIO.setup(moteurl|"Reculer" GPIO.OUT

creation d'un objet PWM appelé moteurPWM en précisant le numero de broche (moteurl["PWM"]) et la
frequence (50Hz)
moteurPWM = GPIO.PWM(moteurl["PWM" 50

demarrage du PWM avec un cycle a 0 : moteur arrété off
moteurPWM.start (0

définir le rapport cyclique a 20 pour faire tourner le moteur 1 a 20% de sa puissance
moteurPWM.ChangeDutyCycle(50

faire tourner le moteur dans un sens pendant 2 secondes
GPIO.output(moteurl|"Avancer"],6GPIO.HIGH
GPIO.output(moteurl|"Reculer"],GPIO.LOW

time.sleep(2

GPIO.output(moteurl|"Avancer"],6 GPIO.LOW
GPIO.output(moteurl|"Reculer"],6GPIO.LOW

Arreter le PWM
moteurPWM. stop

libérer le port du GPIO utilisé
GPIO.cleanup

Gérer les fleches a LED

Pour activer |'éclairage d'une fleche, il suffit :

e de définir les broches concernées en sortie,
o de mettre la sortie a I'état haut pour activer I'éclairage.

RPi.GPIO GPIO
time

Utiliser la numerotation electronique du GPIO
GPIO.setmode (GPIO.BCM

définir les broches du GPIO a utiliser en sortie dans un tableau associatif
fleche={"avancer":16, "reculer":19, "droite":13, "gauche":26

Configurer les broches en sortie
GPIO0.setup(fleche|"avancer"],6GPIO.OUT
GPIO.setup(fleche|"reculer"],GPIO0.0UT
GPIO.setup(fleche["droite"|,GPIO.OUT
GPIO.setup(fleche|"gauche"],GPIO0.0UT

"Activer la fleche avancer pendant 1 seconde :"
GPIO.output(fleche["avancer"],GPIO.HIGH
time.sleep(1l
GPIO0.output(fleche|"avancer"],6 GPIO.LOW
time.sleep(1

"Activer la fleche reculer pendant 1 seconde :"
GPIO0.output(fleche["reculer"],GPIO.HIGH
time.sleep(1
GPIO.output(fleche["reculer"], GPIO.LOW
time.sleep(1

"Activer la fleche droite pendant 1 seconde :"
GPIO.output(fleche["droite"],GPIO.HIGH

/ Printed on 2026/01/09 02:59

2026/01/09 02:59

: utiliser la carte d'extension Motor Shield de SB Components

time.

GPIO

time.

GPIO

time.
GPIO.
time.

3/5 Raspberry
sleep(1
.output(fleche["droite"],GPIO.LOW
sleep(1
"Activer la fleche gauche pendant 1 seconde :"
.output(fleche["gauche"],GPIO.HIGH
sleep(1
output(fleche|"gauche"],6 GPIO.LOW
sleep(1l

libérer les ports du GPIO utilises

GPIO.

cleanup

Gérer le capteur a ultrasons

principe

Un émetteur d’ultrasons (Tx) envoie un train d'ondes sonores (8 impulsions a 40kHz) qui se réfléchissent sur un obstacle et reviennent vers
un récepteur (Rx). Connaissant la vitesse du son dans I'air (environ 340 m/s) il suffit de diviser par 2 le temps mis par les ondes pour faire
I'aller-retour et calcule alors la distance de I'obstacle.

Pour en savoir plus :

Rx

T

e https://www.framboise314.fr/mesure-de-distance-par-ultrasons-avec-le-raspberry-pi/
e http://espace-raspberry-francais.fr/Composants/Mesure-de-distance-avec-HC-SR04-Raspberry-Francais/

Les cours du BTS SIO -/

https://www.framboise314.fr/mesure-de-distance-par-ultrasons-avec-le-raspberry-pi/
http://espace-raspberry-francais.fr/Composants/Mesure-de-distance-avec-HC-SR04-Raspberry-Francais/

Last update: 2018/05/16 20:54 isn:raspberry_motorshield /doku.php/isn/raspberry_motorshield

Pour mesurer la distance d'un obstacle on procéde de la maniére suivante :

e on envoie sur I'entrée Trig du capteur HC-SR04 un train d'onde pendant un tres bref instant de 10 micro secondes (0.00001 s),
o DES QUE LE TRAIN EST EMIS, I'entrée Echo délivre une tensions de 5 v
e dés que I'entrée Echo détecte le retour du train d'onde, I'entrée n'est plus a 5V.

RPi.GPIO GPIO
time

Utiliser la numerotation electronique du GPIO
GPIO.setmode(GPIO.BCM

définir les broches du GPIO a utiliser en sortie pour envoyer le train d'onde et en entrée pour la
réception
ultrason={"envoi":5, "echo":6

Configurer les broches
GPIO.setup(ultrason|"envoi"],GPIO0.0UT
GPIO.setup(ultrason|"echo"],6GPIO.IN

fonction qui retourne la distance d'un obtacle
distance
generation du train d’ondes ultrasonores
GPIO.output(ultrason|"envoi" GPIO.HIGH
time.sleep(0.00001
GPIO.output(ultrason|"envoi" GPIO.LOW
start time.time

boucler tant que l'entree n'est pas a l'etat haut
GPIO.input(ultrason|"echo" 0:

enregistrement du temps de départ

debutImpulsion= time.time

boucler tant que l'entree n'est pas revenue a un etat bas
GPIO.input(ultrason|"echo" g

enregistre le temps quand l'entree n'est plus a l'état haut

finImpulsion time.time

calcul de la distance en cm arrondie a l'entier
distance round((finImpulsion - debutImpulsion) * 343*%100/2,1

renvoyer la valeur de la distance
distance

lancer la fonction distance() jusqu'a l'appui d'une touche
True:

lancement de la fonction distance() et affichage du résultat obtenu
distance

attendre 1 seconde avant de relancer la détermination de la distance
time.sleep(1

KeyboardInterrupt:
arreter le programme

libérer les ports du GPIO utilises
GPIO.cleanup

Les activités ...

Je reviens a la liste des activités.

/ Printed on 2026/01/09 02:59

/doku.php/isn/accueil

2026/01/09 02:59 5/5 Raspberry : utiliser la carte d'extension Motor Shield de SB Components

From:
/ - Les cours du BTS SIO

Permanent link:
/doku.php/isn/raspberry_motorshield

Last update: 2018/05/16 20:54

Les cours du BTS SIO -/

/doku.php/isn/raspberry_motorshield

	Raspberry : utiliser la carte d'extension Motor Shield de SB Components
	Ressources
	Présentation
	Branchement des moteurs
	GPIO utilisés pour les moteurs
	GPIO utilisés pour les flèches
	GPIO utilisés pour les capteurs

	Gérer les moteurs
	Gérer les flèches à LED
	Gérer le capteur à ultrasons
	principe
	Les activités ...

