2026/01/26 03:50 1/5 Programmation asynchrone en Python

Programmation asynchrone en Python

Présentation

Un programme informatique réalisé avec un mode de programmation synchrone consiste en une liste de différentes taches qui
s'exécutent les unes apres les autres. Dans cette liste, une tache doit attendre que les toutes les taches précédents soient
terminées avant d'étre exécutée. De méme, toutes les taches successives doivent attendre que cette tache soit terminée pour étre a leur
tour exécutées.

Ces taches sont concurrentes et sont considérées comme bloquantes pour toutes les taches qui suivent.
Cela convient pour de nombreux programmes informatiques.

La programmation asynchrone permet a un programme de lancer plusieurs taches sans attendre que chacune de ces taches soient
terminées avant de passer a la suivante. Cette maniere de programmer permet :

e de ne pas bloquer le déroulement d'un programme qui attendrait la fin d'une tache avant de passer a la suivante,
o d'optimiser les temps de traitement.

Pour cela il est nécessaire que les taches le permettent, c'est a dire que certaines taches soient indépendantes de la fin de
I'exécution d'autres taches.

Exemples de programmation asynchrone

e |es applications réseaux et notamment les applications Web, ol les temps de réponse entre le client et le serveur peuvent étre trés
variables en fonction de I'état du réseau ou des délais de traitement sur le serveur.
® |es accés a des données (disque dur, base de données, ressources sur le réseau, loT, etc.) qui sont plus lents que les accés a la
mémoire de I'ordinateur.
e |a gestion d'un websocket, ou il est nécessaire, pour le serveur tout comme le client :
o de pouvoir envoyer des données,
o et EN MEME TEMPS de recevoir des données.
o Sion utilise un modele de programmation synchrone, le serveur (ou le serveur) doit réaliser une tache apres l'autre car il ne
peut a la fois attendre des données et en envoyer. Ou bien il se consacre alternativement a I'une ou a I'autre de ces deux
taches concurrentes sans savoir a priori s'il a plus de données a recevoir ou a envoyer.

Le modele de programmation asynchrone permet alors de lancer plusieurs taches :

e taches qui doivent bien sirr pouvoir s'exécuter indépendamment |'une de I'autre,

e taches appelée coroutines et qui s'exécutent I'une apres I'autre, dans le désordre, de maniere non bloquante,

e coroutines qui s'exécutent dans le méme processus et qui peuvent s'échanger des messages et se partager des
informations.

Le langage Python dispose depuis la version 3.6 de la bibliotheque asyncio pour gérer des traitements asynchrones.

Installer la version python3.6 :
e ajouter la ligne suivante au fichier /etc/apt/sources.list
$ sudo nano /etc/apt/sources.list
add
deb http://ftp.de.debian.org/debian testing main
e mettre a jour la liste des paquets
$ sudo apt-get update

e installer python 3.6

$ sudo apt-get -t testing install python3.6

Les cours du BTS SIO -/

Last update: 2018/09/30 21:48 isn:programmationasynchrone /doku.php/isn/programmationasynchrone

Principe de programmation avec la bibliotheque asyncio

liens :

e https://tutorialedge.net/python/concurrency/asyncio-event-loops-tutorial/
e https://www.artificialworlds.net/blog/2017/05/31/basic-ideas-of-python-3-asyncio-concurrency/

Le composant principal de tout programme Python basé sur la bibliothéque asyncio est la gestion d'une boucle d'événement (event loop)
qui se charge de lancer les différentes taches (coroutines) du programme.

La boucle d'événements attend que des événements se produisent et fait correspondre a chacun de ces événements une fonction qui a été
explicitement associée a ce type d'événement.

e [nstancier une boucle d'évenement : <code python> loop = asyncio.geteventloop() </code>
e choisir les options d'exécution de la boucle d'évévnement :
o soit indiquer la fonction (la coroutine) a exécuter durant cette boucle et, quand la coroutine aura fini son exécution,
d'arréter la boucle d'événement :

loop.run until complete(Coroutine
loop.close

o soit de faire exécuter indéfiniment la boucle d'événement jusqu'a ce que la fonction stop() soit appelée :

<code python> # définir quelle coroutine doit étre exécutée : asyncio.ensurefuture(Coroutine()) loop.runforever() loop.close()
</code>

Attention : cette méthode va faire boucler indéfiniment la boucle d'événement. Il faut alors gérer l'arrét de la
boucle

e |a définition de la coroutine se fait en utilisant le mot clé async :

Code avec la méthode run_until_complete()

asyncio

Définir la coroutine qui sera exécutée ultérieurement (future)
async Coroutine
"Exécution de la coroutine"

Création de la boucle d'événement (event loop)
loop = asyncio.get event loop

exécuter la boucle d'événement jusqu'a la fin de l'exécution de la coroutine
loop.run until complete(Coroutine

fermer la boucle d'événement
loop.close

Code avec la méthode run_forever()

asyncio

Définir la coroutine qui sera exécuter ultérieurement (future)
async Coroutine
"Exécution de la coroutine"

indiquer que la coroutine sera exécutée dans la boucle d'événement
Celle-ci est planifiée en arriére plan mais pour l'instant

le programme n'attend pas le résultat de son exécution
asyncio.ensure future(Coroutine

Création de la boucle d'événement (event loop)
loop = asyncio.get event loop

#lancer indefiniment la boucle -> bouclage infini du programme

/ Printed on 2026/01/26 03:50

https://tutorialedge.net/python/concurrency/asyncio-event-loops-tutorial/
https://www.artificialworlds.net/blog/2017/05/31/basic-ideas-of-python-3-asyncio-concurrency/

2026/01/26 03:50 3/5 Programmation asynchrone en Python

loop.run forever

fermer la boucle d'événement -> ne sera jamais exécuté en 1'état
loop.close

Pour arréter la boucle d'événement il faut appeler la méthode stop(), par exemple dans la coroutine :

Définir la coroutine qui sera exécuter ultérieurement (future)

async Coroutine
"Exécution de la coroutine"
loop.stop

Si la méthode stop() n'est appelée le programme va boucler indéfiniment.

Lancer plusieurs coroutines

Pour lancer plusieurs coroutines :

o il faut mettre chaque coroutine en file d'attente avec la méthode asyncio.ensure_future (function ()).
e utiliser le mot clé await sur une instruction de la coroutine qui est bloquante.

Le mot clé await sur une instruction de la coroutine qui est bloquante :

e il s'agit d'une instruction qui prend du temps a s'exécuter.

e |e temps que cette instruction se termine, les autres instructions de la coroutine sont mises en attente et la main
est rendue a la boucle d'événement, pour lancer d'autres taches ou poursuivre I'exécution d'autres taches.
e dés que l'instruction qui prenait du temps est terminée, les autres instructions de la coroutine sont exécutées.

</WRAP>

time
asyncio

Définir deux coroutines qui seront exécutée ultérieurement (future)
async Coroutine 1
"Exécution de la coroutine 1"
await asyncio.sleep
"Fin de 1'exécution de la coroutine 1"

async Coroutine 2
"Exécution de la coroutine 2"
await asyncio.sleep
"Fin de l'exécution de la coroutine 2"
loop.stop

Création de la boucle d'événement (event loop)
loop = asyncio.get event loop

indiquer les coroutines a exécuter dans la boucle d'événement
asyncio.ensure future(Coroutine 1
asyncio.ensure future(Coroutine 2

#lancer indefiniment la boucle -> bouclage infini du programme
loop.run forever

fermer la boucle d'événement
loop.close

e autre maniere de le gérer avec la méthode gather()

time
asyncio

Définir deux coroutines qui seront exécutée ultérieurement (future)
async Coroutine 1
"Exécution de la coroutine 1"

Les cours du BTS SIO -/

Last update: 2018/09/30 21:48 isn:programmationasynchrone /doku.php/isn/programmationasynchrone

await asyncio.sleep
"Fin de l'exécution de la coroutine 1"

async Coroutine 2
"Exécution de la coroutine 2"
await asyncio.sleep
"Fin de l'exécution de la coroutine 2"
loop.stop

Création de la boucle d'événement (event loop)
loop = asyncio.get event loop

indiquer dans une variable liste coroutines la liste de coroutines
a ajouter a la boucle d'événement
liste coroutines = asyncio.gather(Coroutine 1 Coroutine 2

#exécuter la boucle d'événement jusqu'a la fin de l'exécution des coroutines
loop.run until complete(liste coroutines

fermer la boucle d'événement
loop.close

Appeler une coroutine depuis une autre coroutine
Dans les situations précédentes :

e Des coroutines indépendantes les unes des autres étaient tout d'abord planifiées en arriere plan en tant qu'objet
coroutine sans étre exécutées.

® Pour que le code d'une coroutine soit exécuté, celle-ci doit étre mise dans une boucle d'événement.

e Pour que la coroutine ne blogue le programme le mot clé await précise I'instruction de la coroutine qui est prend du
temps a s'exécuter afin de rendre la main au planificateur afin que celui-ci gére I'exécution d'autres taches.

Voici comment on peut gérer I'appel de la coroutine 2 depuis la premiere :

time
asyncio

Définir deux coroutines qui seront exécutée ultérieurement (future)
async Coroutine 1
"Exécution de la coroutine 1"
await Coroutine 2
"Fin de l'exécution de la coroutine 1"
nwyw

async Coroutine 2
"Exécution de la coroutine 2"
await asyncio.sleep
"Fin de l'exécution de la coroutine 2"
o
#loop.stop()

Création de la boucle d'événement (event loop)
loop = asyncio.get event loop
loop.run until complete(Coroutine 1

fermer la boucle d'événement -> est maintenant exécuté
loop.close

Parties suivantes a approfondir ...
Ressources :
e https://www.artificialworlds.net/blog/2017/05/31/basic-ideas-of-python-3-asyncio-concurrency/

e https://stackoverflow.com/questions/42231161/asyncio-gather-vs-asyncio-wait
e https://docs.python.org/3/library/asyncio-task.html

Gérer différentes taches : non finalisé

Les taches dans Asyncio sont responsables de |'exécution des coroutines dans une boucle d'événement. Ces taches ne
peuvent s'exécuter que dans une boucle d'événement a la fois et, pour réaliser I'exécution en parallele, vous devez

Printed on 2026/01/26 03:50

https://www.artificialworlds.net/blog/2017/05/31/basic-ideas-of-python-3-asyncio-concurrency/
https://stackoverflow.com/questions/42231161/asyncio-gather-vs-asyncio-wait
https://docs.python.org/3/library/asyncio-task.html

2026/01/26 03:50 5/5 Programmation asynchrone en Python

exécuter plusieurs boucles d'événements.

La fonction wait () permet d'attendre jusqu'a ce que les instances Future, les taches, soient terminée. Cette fonction
renvoie alors un ensemble de 2 ensembles nommés. Le premier jeu contient les taches terminées, le second les taches non
terminées.

#envoyer des messages en paralléle
envoyer = asyncio.ensure future(gestion envoi message(websocket
#recevoir message en paralleéele
recevoir = asyncio.ensure future(gestion reception message(websocket
termine, attente await asyncio.wait
envoyer, recevoir
return_when = asyncio.FIRST COMPLETED

Les activités ...

Je reviens a la liste des activités.

From:
/ - Les cours du BTS SIO

Permanent link:
/doku.php/isn/programmationasynchrone

Last update: 2018/09/30 21:48

Les cours du BTS SIO -/

/doku.php/isn/accueil
/doku.php/isn/programmationasynchrone

	Programmation asynchrone en Python
	Présentation
	Exemples de programmation asynchrone

	Principe de programmation avec la bibliothèque asyncio
	Code avec la méthode run_until_complete()
	Code avec la méthode run_forever()

	Lancer plusieurs coroutines
	Appeler une coroutine depuis une autre coroutine
	Parties suivantes à approfondir ...
	Gérer différentes tâches : non finalisé
	Les activités ...

