
2026/01/29 22:54 1/3 Python : programmation fonctionnelle

Les cours du BTS SIO - /

Python : programmation fonctionnelle

Ressources

https://python.developpez.com/tutoriels/apprendre-programmation-fonctionnelle/

Présentation

Le paradigme de programmation fonctionnelle se caractérise essentiellement par l'absence d'effets de bord.

Pour cela, le code défini à l'intérieur d'une fonction :

ne dépend pas de données se trouvant à l'extérieur de cette fonction courante ;
et le code à l'intérieur de la fonction ne modifie pas des données à l'extérieur de cette fonction.

Exemples

voici une fonction qui n'utilise pas ce paradigme de programmation fonctionnelle :

a = 0
def augmenter():
 global a
 a = a + 1

Explications :

la variable a est définie à l'extérieur de la fonction augmenter() ;
Il est précisé dans le corps de la fonction augmenter() que la variable a est définie comme globale ;
lors de l'exécution de la fonction augmenter(), la valeur de la variable a est changée pour passer de 0 à 1.
Comme il s'agit d'une variable a globale, sa valeur est maintenant changée pour l'ensemble du programme
et pas seulement à l'intérieur de la fonction augmenter().

Voici la même fonction une fonction augmenter() en utilisant la programmation fonctionnelle :

def increment(a):
 return a + 1

Explications :

la variable a est passée en paramètre à la fonction augmenter() ;
cette fonction retourne la valeur de a augmentée de 1 mais sans modifier la valeur intiale de a qui reste alors
à 0.
Il n'y a pas d'effet de bord : à l'issue de l'exécution de la fonction augmenter(), la valeur de la variable a n'a pas
changée.

Itérer sur des listes

La programmation fonctionnelle est particulièrement intéressant pour intervenir sur des listes. Les exemple qui suivent s'appuie sur la liste
de Todos suivantes :

taches = [{"id":"1","libelle":"Préparer mon sac", "accomplie":True},
 {"id":"2","libelle":"Prendre mon petit-déjeuner", "accomplie":False},
 {"id":"3","libelle":"Partir au lycée", "accomplie":False}]

https://python.developpez.com/tutoriels/apprendre-programmation-fonctionnelle/

Last update: 2019/03/23 17:35 icn:facultatif:c_langage_python_fonctionnelle_01 /doku.php/icn/facultatif/c_langage_python_fonctionnelle_01

/ Printed on 2026/01/29 22:54

La fonction map

La fonction map prend en argument une fonction et une collection de données ;
Elle crée une nouvelle collection vide ;
applique la fonction à chaque élément de la collection d'origine et insère les valeurs de retour produites dans la nouvelle collection
;
elle renvoie alors la nouvelle collection.

Voici l'utilisation de la fonction map pour avoir une nouvelle liste tachesfinies avec toutes les tâches finies :

definition de la fonction qui met la valeur True pour la donnée acccomplie
def fini(tache):
 return {"id":tache["id"],"libelle":tache["libelle"], "accomplie":False}

#nouvelle liste avec toutes taches accomplies
tachesfinies = list(map(fini,taches))

Il est possible d'utiliser une fonction anonyme lambda directement dans la fonction map :

utilisation d'une fonction anonyme lambda
#nouvelle liste avec toutes taches accomplies
tachesfinies = list(map(lambda tache: {"id":tache["id"],"libelle":tache["libelle"], "accomplie":False},
taches))

Les fonctions lambda sont des fonctions anonymes, c'est à dire des fonctions qui n'ont pas de nom. Une fonction
anonyme : * est définie à l'aide du mot-clef lambda ; * les paramètres de la fonction lambda sont définis à
gauche du caractère deux-points :

le corps de la fonction est défini à sa droite ;
le résultat de l'exécution du corps de cette fonction, ce qui correspond à l'instruction return est renvoyé
implicitement.

Une fonction anonyme peut être placée :

directement dans une fonction qui accepte en paramètre une fonction ;
dans une variable pour être utiliser ultérieurement.

Exemple avec une variable :

definition de la fonction anonyme et affectation dans la variable fois2
fois2 = lambda x: x * 2

#utilisation
>>> print(fois2(4))
>>> 8

Même résultat avec un générateur :

#nouvelle liste avec les taches modifiées pour les indiquer accomplies (finies)
tachesfinies = [fini(tache) for tache in taches]

La fonction filter

La fonction filter prend en argument une fonction qui est une condition et une collection de données ;
Elle crée une nouvelle collection vide ;
applique la fonction à chaque élément de la collection d'origine et insère dans la nouvelle collection uniquement les
éléments qui répondent à la condition ; * Elle renvoie alors la nouvelle collection. Voici l'utilisation de la fonction
filter pour avoir une nouvelle liste tachesfinies qui ne contient que les tâches finies : <code python> # definition de
la fonction qui teste la valeur True pour la donnée acccomplie def fini(tache): return tache[“accomplie”] == True
#nouvelle liste avec uniquement les taches accomplies (finies) tachesfinies = list(filter(fini,taches)) </code> Même
résultat avec une fonction anonyme : <code python> #nouvelle liste avec uniquement les taches accomplies (finies)
tachesfinies = list(filter(lambda tache:tache[“accomplie”] == True, taches)) </code> Même résultat avec un
générateur : <code python> #nouvelle liste avec uniquement les taches accomplies (finies) tachesfinies = [tache for
tache in taches if tache[“accomplie”] == True] </code> ===== La fonction reduce ===== La fonction reduce prend
en entrée une fonction et une collection d'éléments. Elle renvoie une valeur créée en combinant les éléments de la

2026/01/29 22:54 3/3 Python : programmation fonctionnelle

Les cours du BTS SIO - /

collection. Exemple qui calcule la somme des éléments d'un tableau <code python> # importation de la fonction
reduce from functools import reduce tableau = [0, 1, 2, 3, 4] somme = reduce(lambda a, x: a + x, tableau) # somme
contient 10 </code>

Explications :

x est l'élément courant de l'itération et a est l'accumulateur ;
l'accumulateur est la valeur renvoyée par l'exécution de la fonction lambda sur l'élément précédent ;
la fonction reduce() parcourt les éléments de la liste et, pour chacun d'eux, exécute la fonction lambda
sur les valeurs courantes de a et de x et renvoie le résultat qui devient le a de l'itération suivante ;
la valeur de a lors de la première itération est la première valeur de la liste ; la première valeur de x est
donc le second élément de la liste.
pour préciser une valeur initiale différente de a, on le précise en 3ème paramètre de la fonction reduce :

somme = reduce(lambda a, x: a + x, tableau, 50)

====== Trier des listes ====== <code python> taches.sort(key=lambda tache: tache[“id”], reverse=True) </code> * le
paramètre key permet de préciser sur quelle données trier ; * le paramètre reverse permet de changer l'ordre du tri. ====
Retour au cours : Les instructions du langage Python ====

Cours : Les instructions du langage Python

From:
/ - Les cours du BTS SIO

Permanent link:
/doku.php/icn/facultatif/c_langage_python_fonctionnelle_01

Last update: 2019/03/23 17:35

/doku.php/icn/facultatif/c_langage_python
/doku.php/icn/facultatif/c_langage_python_fonctionnelle_01

	Python : programmation fonctionnelle
	Ressources
	Présentation
	Exemples

	Itérer sur des listes
	La fonction map
	La fonction filter

