2026/01/29 22:54 1/3 Python : programmation fonctionnelle

Python : programmation fonctionnelle

Ressources

e https://python.developpez.com/tutoriels/apprendre-programmation-fonctionnelle/

Présentation

Le paradigme de programmation fonctionnelle se caractérise essentiellement par I'absence d'effets de bord.
Pour cela, le code défini a I'intérieur d'une fonction :

e ne dépend pas de données se trouvant a I'extérieur de cette fonction courante ;
e et |le code a l'intérieur de la fonction ne modifie pas des données a I'extérieur de cette fonction.

Exemples

e voici une fonction qui n'utilise pas ce paradigme de programmation fonctionnelle :

augmenter
a
a=a+

Explications :

e |a variable a est définie a I'extérieur de la fonction augmenter() ;

e || est précisé dans le corps de la fonction augmenter() que la variable a est définie comme globale ;

o |ors de I'exécution de la fonction augmenter(), la valeur de la variable a est changée pour passer de 0 a 1.
Comme il s'agit d'une variable a globale, sa valeur est maintenant changée pour I'ensemble du programme
et pas seulement a l'intérieur de la fonction augmenter().

e Voici la méme fonction une fonction augmenter() en utilisant la programmation fonctionnelle :

increment(a
a +

Explications :

e |a variable a est passée en parametre a la fonction augmenter() ;

e cette fonction retourne la valeur de a augmentée de 1 mais sans modifier la valeur intiale de a qui reste alors
ao.

e |l n'y a pas d'effet de bord : a I'issue de I'exécution de la fonction augmenter(), la valeur de la variable a n'a pas
changée.

Itérer sur des listes

La programmation fonctionnelle est particulierement intéressant pour intervenir sur des listes. Les exemple qui suivent s'appuie sur la liste
de Todos suivantes :

taches "id":"1","libelle":"Préparer mon sac", "accomplie":True
"id":"2","libelle":"Prendre mon petit-déjeuner", "accomplie":False
"id":"3","libelle":"Partir au lycée", "accomplie":False

Les cours du BTS SIO -/

https://python.developpez.com/tutoriels/apprendre-programmation-fonctionnelle/

Last update: 2019/03/23 17:35 icn:facultatif:c_langage_python_fonctionnelle_01 /doku.php/icn/facultatif/c_langage_python_fonctionnelle_01

La fonction map

e La fonction map prend en argument une fonction et une collection de données ;
o Elle crée une nouvelle collection vide ;

o applique la fonction a chaque élément de la collection d'origine et insére les valeurs de retour produites dans la nouvelle collection
e elle renvoie alors la nouvelle collection.

Voici I'utilisation de la fonction map pour avoir une nouvelle liste tachesfinies avec toutes les taches finies :

definition de la fonction qui met la valeur True pour la donnée acccomplie
fini(tache):

"id":tache["id"], "libelle":tache["libelle" "accomplie":False

#nouvelle liste avec toutes taches accomplies
tachesfinies list(map(fini, taches

Il est possible d'utiliser une fonction anonyme lambda directement dans la fonction map :

utilisation d'une fonction anonyme lambda
#nouvelle liste avec toutes taches accomplies

tachesfinies list(map tache: {"id":tache["id"],6 "libelle":tache|"libelle" "accomplie":False
taches

Les fonctions lambda sont des fonctions anonymes, c'est a dire des fonctions qui n'ont pas de nom. Une fonction

anonyme : * est définie a I'aide du mot-clef lambda ; * les paramétres de la fonction lambda sont définis a
gauche du caractere deux-points :

® |e corps de la fonction est défini a sa droite ;

o |e résultat de I'exécution du corps de cette fonction, ce qui correspond a l'instruction return est renvoyé
implicitement.

Une fonction anonyme peut étre placée :

o directement dans une fonction qui accepte en parametre une fonction ;
e dans une variable pour étre utiliser ultérieurement.

Exemple avec une variable :

definition de la fonction anonyme et affectation dans la variable fois2
fois2 x: x *

#utilisation
fois2

Méme résultat avec un générateur :

#nouvelle liste avec les taches modifiées pour les indiquer accomplies (finies)
tachesfinies fini(tache tache taches

La fonction filter

o La fonction filter prend en argument une fonction qui est une condition et une collection de données ;

e Elle crée une nouvelle collection vide ;

o applique la fonction a chaque élément de la collection d'origine et insére dans la nouvelle collection uniquement les
éléments qui répondent a la condition ; * Elle renvoie alors la nouvelle collection. Voici l'utilisation de la fonction
filter pour avoir une nouvelle liste tachesfinies qui ne contient que les taches finies : <code python> # definition de
la fonction qui teste la valeur True pour la donnée acccomplie def fini(tache): return tache[“accomplie”] == True
#nouvelle liste avec uniquement les taches accomplies (finies) tachesfinies = list(filter(fini,taches)) </code> Méme
résultat avec une fonction anonyme : <code python> #nouvelle liste avec uniquement les taches accomplies (finies)
tachesfinies = list(filter(lambda tache:tache[“accomplie”] == True, taches)) </code> Méme résultat avec un
générateur : <code python> #nouvelle liste avec uniquement les taches accomplies (finies) tachesfinies = [tache for
tache in taches if tache[“accomplie”] == True] </code> ===== La fonction reduce ===== La fonction reduce prend
en entrée une fonction et une collection d'éléments. Elle renvoie une valeur créée en combinant les éléments de la

/ Printed on 2026/01/29 22:54

2026/01/29 22:54 3/3 Python : programmation fonctionnelle

collection. Exemple qui calcule la somme des éléments d'un tableau <code python> # importation de la fonction
reduce from functools import reduce tableau = [0, 1, 2, 3, 4] somme = reduce(lambda a, x: a + x, tableau) # somme
contient 10 </code>

Explications :

[e]

x est |'élément courant de I'itération et a est I'accumulateur ;

I'accumulateur est la valeur renvoyée par I'exécution de la fonction lambda sur I'élément précédent ;

la fonction reduce() parcourt les éléments de la liste et, pour chacun d'eux, exécute la fonction lambda
sur les valeurs courantes de a et de x et renvoie le résultat qui devient le a de I'itération suivante ;

la valeur de a lors de la premiere itération est la premiére valeur de la liste ; la premiére valeur de x est
donc le second élément de la liste.

o pour préciser une valeur initiale différente de a, on le précise en 3éme parametre de la fonction reduce :

o O

o

somme reduce a, X: a + x, tableau

====== Trier des listes ====== <code python> taches.sort(key=lambda tache: tache[“id"], reverse=True) </code> * |le
parametre key permet de préciser sur quelle données trier ; * le paramétre reverse permet de changer I'ordre du tri. ====
Retour au cours : Les instructions du langage Python ====

o Cours : Les instructions du langage Python

From:
/ - Les cours du BTS SIO

Permanent link:
/doku.php/icn/facultatif/c_langage_python_fonctionnelle_01

Last update: 2019/03/23 17:35

Les cours du BTS SIO -/

/doku.php/icn/facultatif/c_langage_python
/doku.php/icn/facultatif/c_langage_python_fonctionnelle_01

	Python : programmation fonctionnelle
	Ressources
	Présentation
	Exemples

	Itérer sur des listes
	La fonction map
	La fonction filter

