
2026/02/11 16:06 1/3 Python : programmation asynchrone

Les cours du BTS SIO - /

Python : programmation asynchrone

Présentation

Un programme est une succession d'instructions qui s'exécutent plus ou moins rapidement :

si ces instructions doivent obligatoirement s'enchaîner parce qu'elles sont dépendantes les unes des autres, le temps
d'exécution de la totalité du programme résultera de la somme du temps d'exécution individuel de chaque instruction.
si certaines instructions sont indépendantes entre elles, elles seront cependant bloquées le temps que se terminent les
instructions précédentes.

Ce mode de programmation est un appelé programmation synchrone.

Le mode programmation asynchrone permet alors de lancer l'exécution d'une instruction et, sans attendre la fin de l'exécution de
celle-ci, de lancer l'exécution d'une autre instruction.

Cela est utile pour des instructions qui s'exécutent lentement comme la récupération ou l'écriture de données depuis le réseau ou sur le
disque dur (les entrée/sorties) et que l'on souhaite na pas bloquer le programme tant que ces instructions ne sont pas terminées. Cela
concerne donc particulièrement les applications du Web.

La programmation asynchrone permet de gérer un ensemble d’événements de façon concurrente.

Principe de la programmation asynchrone

L'idée générale de la programmation asynchrone est de pouvoir démarrer des opérations non bloquantes de façon concurrente, puis
de pouvoir suivre leurs états et finalement exécuter des fonctions de retour (callbacks) quand elles sont prêtes.

Pour cela le programme va gérer une boucle qui attend que des événements (event loop) se produisent et alors fait correspondre à
chaque événement qui survient la fonction qui lui est associée. C'est dans la fonction associée que sont définis les traitement à faire.

Exemple pour un serveur Web :

le serveur Web à un seul point d'entrée et dispose de plusieurs pages web ;
le serveur est en attente, c'est à dire à l'écoute des requêtes des clients (les navigateurs) qui peuvent demander
telle ou telle page ;
dès qu'une requête arrive, le serveur Web retourne la page correspondant à la demande.

Précisions :

chaque requête des clients est considérée comme un événement distinct (event),
le serveur est programmé pour qu'à chaque événement une fonction prédéfinie soit exécutée. L'événement est
le déclencheur de l'exécution de la fonction.

La bibliothèque asyncio

La bibliothèque asyncio permet de faire de la programmation asynchrone et dispose de deux éléments fondamentaux, une event loop et
la classe Future.

La mise en oeuvre de la programmation asynchrone avec la bibliothèque asyncio nécessite l'utilisation deux mots clés async et await :

async permet de définir la fonction comme asynchrone,
dans le corps de la fonction, await permet de préciser qu'une instruction suspend l’exécution de la fonction asynchrone le temps
que cette instruction se termine. Pendant ce temps le programme qui a appelé la fonction asynchrone pourra continuer son
exécution normalement en attendant qu’elle soit débloquée.

Première manière de gérer une boucle d'événement

Première possibilité pour créer une boucle d'événement (event loop) :

Last update: 2018/04/08 14:53 icn:facultatif:c_langage_python_asynchrone /doku.php/icn/facultatif/c_langage_python_asynchrone

/ Printed on 2026/02/11 16:06

on instancie une boucle d'événement avec la méthode asyncio.geteventloop()
on précise, durant cette bouche d'événement quelle fonction doit être exécutée avec la méthode
rununtilcomplete(maCoroutine()). La fonction qui est exécutée dans la boucle d'événement est appelée une coroutine.
on définit une fonction comme un coroutine en rajoutant le mot clé async.

import asyncio
import time

Definir une coroutine qui sera exécutée ultérieurement (dans le futur)
async def maCoroutine():
 print("Début de ma Coroutine")
 time.sleep(2)
 print("Fin de ma Coroutine")

Faire tourner une simple boucle d'événement
jusqu'à ce que l'exécution a la coroutine soit finie (completed)
loop = asyncio.get_event_loop()
loop.run_until_complete(maCoroutine())

fermer la boucle d'événement
print("fermer la boucle d'événement")
loop.close()

Les options d'exécution

Pour exécuter la boucle d'événement on peut :

appeler la méthode rununtilcomplete(future) et terminer la boucle d'événement quand la fonction future (la coroutine) a
terminé son exécution,
appeler la méthode run_forever() qui exécutera la boucle d'événement jusqu'à ce que la méthode stop() soit appelée ou si le
programme se termine.

Autre alternative pour gérer une boucle d'événement avec la méthode
run_forever()

La méthode runforever() permet à la boucle d'événement de s'exécuter indéfiniment jusqu'à ce que le programme se termine
ou si la méthode stop() est appelée. La méthode ensurefuture() permet également de déclarer une coroutine et sera utile
pour déclarer plusieurs coroutines dans la même boucle d'événement. <code python> import asyncio async def
maCoroutine(): while True: print(“Début de ma Coroutine”) await asyncio.sleep(1) print(“Fin de ma Coroutine”) loop =
asyncio.geteventloop() try: asyncio.ensurefuture(maCoroutine()) loop.runforever() except KeyboardInterrupt: pass finally: #
fermer la boucle d'événement print(“fermer la boucle d'événement”) loop.close() </code>

Précisions :
La fonction utilise une boucle infinie et donc le programme va boucler indéfiniment. Il est possible alors :

d'interrompre le programme avec les touches d'interruption CTRL + C,
de gérer l'exception qui est générée,
pour afficher Fermer proprement la boucle et terminer proprement le programme.

===== Gérer des tâches en parallèle ===== Un intérête de la programmation asynchrone est de pourvoir gérer des tâches en parallèle :
* une première tâche est lancée, * une deuxième tâche, qui ne dépend par de la fin de l'exécution de la première tâche peut être lancée,
alors même que la première tâche n'est pas terminée. <code python> import asyncio async def tache_1(): while True: print(“Début de ma
tâche 1”) await asyncio.sleep(1) print(“Fin de ma tâche 1”) async def tache2(): while True: print(“Début de ma tâche 2”) await
asyncio.sleep(5) print(“Fin de ma tâche 2”)
loop = asyncio.getevent_loop() try: asyncio.ensurefuture(tache1()) asyncio.ensurefuture(tache2()) loop.runforever() except
KeyboardInterrupt: pass finally: # fermer la boucle d'événement print(“Fermer la boucle d'événement”) loop.close() </code> Voici le
résultat obtenu : <code python> »> RESTART: D:/Developpement/python/Websocket/scripts/coroutinefutureparallele.py Début de ma tâche
1 Début de ma tâche 2 Fin de ma tâche 1 Début de ma tâche 1 Fin de ma tâche 1 Début de ma tâche 1 Fin de ma tâche 1 Début de ma
tâche 1 Fin de ma tâche 1 Début de ma tâche 1 Fin de ma tâche 2 Début de ma tâche 2 Fin de ma tâche 1 Début de ma tâche 1 Fin de ma
tâche 1 Début de ma tâche 1 Fermer la boucle d'événement »> </code> La tâche 1 s'exécute plus souvent que la tâche 2. Ces deux
tâches s'exécutent indépendamment l'une de l'autre. ==== Retour au cours : Les instructions du langage Python ====

2026/02/11 16:06 3/3 Python : programmation asynchrone

Les cours du BTS SIO - /

Cours : Les instructions du langage Python

From:
/ - Les cours du BTS SIO

Permanent link:
/doku.php/icn/facultatif/c_langage_python_asynchrone

Last update: 2018/04/08 14:53

/doku.php/icn/facultatif/c_langage_python
/doku.php/icn/facultatif/c_langage_python_asynchrone

	[Python : programmation asynchrone]
	Python : programmation asynchrone
	Présentation
	Principe de la programmation asynchrone
	La bibliothèque asyncio
	Première manière de gérer une boucle d'événement
	Les options d'exécution
	Autre alternative pour gérer une boucle d'événement avec la méthode run_forever()

