
2026/01/18 01:30 1/3 Scan de ports avec Scapy

Les cours du BTS SIO - /

Scan de ports avec Scapy

Quelques rappels (Linux)

Un port est l'adresse d'une application (ou service) TCP ou UDP sur un hôte au niveau de la couche 4 (Transport),
selon un service est actif ou en écoute, le port applicatif correspondant (associé) est ouvert,
les numéros de port sont codés sur 16 bits, ce qui permet 65 536 ports distincts par hôte,
les ports sont classés en 3 catégories en fonction de leur numéro:

les numéros de port de 0 à 1 023 correspondent aux ports bien-connus (well-known ports) et sont utilisés pour les
services réseaux les plus courants,
les numéros de ports de 1 024 à 49 151 correspondent aux ports enregistrés (registered ports), assignés par l'IANA,
les numéros de ports de 49 152 à 65 535 correspondent aux ports dynamiques, utilisables pour tout type de requêtes
TCP ou UDP autres que celle citées précédemment.

Pour en savoir plus voir la page de Wikipdia : https://fr.wikipedia.org/wiki/Port_(logiciel)

Pour visualiser les ports ouverts d'un hôte et donc connaître les services actifs (en écoute) :

root@debian:~# netstat -tanpu
Connexions Internet actives (serveurs et établies)
Proto Recv-Q Send-Q Adresse locale Adresse distante Etat PID/Program name
tcp 0 0 127.0.0.1:3306 0.0.0.0:* LISTEN 645/mysqld
tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 478/sshd
tcp 0 0 127.0.0.1:25 0.0.0.0:* LISTEN 1087/exim4
tcp 0 464 192.168.1.159:22 192.168.1.196:50264 ESTABLISHED 1119/sshd: root@pts
tcp6 0 0 :::80 :::* LISTEN 680/apache2
tcp6 0 0 :::22 :::* LISTEN 478/sshd
tcp6 0 0 ::1:25 :::* LISTEN 1087/exim4
udp 0 0 0.0.0.0:68 0.0.0.0:* 692/dhclient
root@debian:~#

le colonne Etat indique :
LISTEN pour une application qui est en écoute et en attente de requêtes de la part de clients,
ESTABLISHED quand une application a établi la communication suite à une demande de requête. * Quand un
client a pu se connecter à un port, l'état de l'application passe de LISTEN à ESTABLISHED. * Quand plusieurs
clients se connectent à la même application : * il y a pour chaque client une instance de l'application avec
l'état ESTABLISHED, * et une une autre instance en écoute avec l'état LISTEN pour recevoir de nouvelles
connexions.

Exemple du service SSH (port 22) :

tcp 0 0 0.0.0.0:22 0.0.0.0:* LISTEN 478/sshd
tcp 0 464 192.168.1.159:22 192.168.1.196:50264 ESTABLISHED 1119/sshd:
root@pts

la première ligne montre que le port 22 est à l'état LISTEN,
La seconde ligne montre une connexion établie (ESTABLISHED)

sur le port 22 du serveur 192.168.1.159
avec le client 192.168.1.196 sur le port 50264.

Le port 50264 est choisi aléatoirement par le client lors de l'initialisation de la connexion, pour
communiquer avec le serveur.

Un port TCP ouvert est un port en état LISTEN,
Un port UDP est simplement en écoute car UDP ne gère pas l'établissement de connexions.

udp 0 0 0.0.0.0:68 0.0.0.0:* 692/dhclient

Lors d'un scan de ports, on ne visualise que les ports en état LISTEN.
Les ports en l'état ESTABLISHED ne peuvent pas être visualisés puisque cela correspond à une
communication spécifique entre deux hôtes et un troisième hôte ne peut entrer dans la
communication qui a été établie.

https://fr.wikipedia.org/wiki/Port_

Last update: 2017/11/04 22:42 dev:python:scapy:scapyscanport-1 /doku.php/dev/python/scapy/scapyscanport-1

/ Printed on 2026/01/18 01:30

===== Scan de port TCP===== Source Wikipedia :
https://fr.wikipedia.org/wiki/Transmission_Control_Protocol#.C3.89tablissement_d.27une_connexion Schéma
d'établissement d'une connexion TCP :

- Le client envoie un segment avec le flag SYN au serveur, - Le serveur lui répond par un segment avec le flag SYN/ACK,
- Le client confirme par un segment avec le flag ACK. Durant cet échange initial, les numéros de séquence des deux
parties sont synchronisés : - Le client utilise son numéro de séquence initial dans le champ “Numéro de séquence” du
segment SYN (x par exemple), - Le serveur utilise son numéro de séquence initial dans le champ “Numéro de séquence” du
segment SYN/ACK (y par exemple) et ajoute le numéro de séquence du client plus un (x+1) dans le champ “Numéro
d'acquittement” du segment, - Le client confirme en envoyant un ACK avec un numéro de séquence augmenté de un (x+1)
et un numéro d'acquittement correspondant au numéro de séquence du serveur plus un (y+1). Si le serveur rejette la
connexion, il répond avec un segment dont le flag est RESET. ==== Attributs disponible et valeur par défaut pour le
protocole TCP ==== <code python> »> ls(TCP) sport : ShortEnumField = (20) dport : ShortEnumField = (80) seq : IntField
= (0) ack : IntField = (0) dataofs : BitField = (None) reserved : BitField = (0) flags : FlagsField = (2) window : ShortField =
(8192) chksum : XShortField = (None) urgptr : ShortField = (0) options : TCPOptionsField = ({}) »> </code>) ==== Envoi
d'un paquet TCP sur le service Web d'un serveur (port 80) avec le flag SYN ==== * valeurs du segment TCP à préciser : * *
port de destination 80 pour le service Web * * port source client 55 555 (choisi au dessus de 49 151) * * flag
positionné à SYN (valeur S) * création du segment encapsulé dans un paquet IP destiné à l'hôte 192.168.1.1 (Box Internet)
: <code python> »> paquet = IP(dst='192.168.1.1') / TCP(sport=55555, dport=80, flags='S') »> </code> * envoi du
paquet <code python> »> rep, non_rep = sr(paquet) Begin emission: ..Finished to send 1 packets. .. Received 5 packets,
got 1 answers, remaining 0 packets »> rep.show() 0000 IP / TCP 192.168.1.159:55555 > 192.168.1.1:http S =⇒ IP / TCP
192.168.1.1:http > 192.168.1.159:55555 SA / Padding »> </code> * Le résultat est toujours composé des deux couples
paquet émis / paquet reçu. * Le paquet envoyé sur le port 80 (Scapy affiche http à la place du numéro de port 80) avec le
flag positionné à SYN (Scapy affiche un S pour l'attribut flags ce qui correspond à la valeur numérique 2) <code python>
»> rep[0][0][TCP].show() ###[TCP]### sport= 55555 dport= http seq= 0 ack= 0 dataofs= None reserved= 0 flags= S
window= 8192 chksum= None urgptr= 0 options= {} »> </code> * le paquet reçu correspond a les flags positionnés à
SYN et ACK (Scapy affiche SA ce qui correspond à la valeur numérique 18) ⇒ le port 80 est ouvert. <code python>
rep[0][1][TCP].show() ###[TCP]### sport= http dport= 55555 seq= 3631598158 ack= 1 dataofs= 6 reserved= 0 flags=
SA window= 14600 chksum= 0x5f04 urgptr= 0 options= [('MSS', 1460)] ###[Padding]### load= 'I5' »> </code> ====
Envoi d'un paquet TCP sur le port 22 d'un serveur alors que le service SSH n'est pas actif ==== * valeurs du segment TCP
à préciser : * * port de destination 22 pour le service SSH * * port source client 55 555 (choisi au dessus de 49 151) *
* flag positionné à SYN (valeur S) * création du segment encapsulé dans un paquet IP destiné à l'hôte 192.168.1.100
(Imprimante réseau) : <code python> »> paquet = IP(dst='192.168.1.100') / TCP(sport=55555, dport=22, flags='S') »>
rep, non_rep = sr(paquet) Begin emission: ..Finished to send 1 packets. .. Received 5 packets, got 1 answers, remaining 0
packets »> rep.show() 0000 IP / TCP 192.168.1.159:55555 > 192.168.1.100:ssh S =⇒ IP / TCP 192.168.1.100:ssh >
192.168.1.159:55555 RA / Padding »> rep[0][1][TCP].show() ###[TCP]### sport= ssh dport= 55555 seq= 0 ack= 1
dataofs= 5 reserved= 0 flags= RA window= 0 chksum= 0x5262 urgptr= 0 options= {} ###[Padding]### load=
'\x00\x00\x00\x00\x00\x00' »> </code> * Le résultat est toujours composé des deux couples paquet émis / paquet reçu. *
Le paquet envoyé sur le port 22 (Scapy affiche ssh à la place du numéro de port 80) avec le flag positionné à SYN (Scapy
affiche un S pour l'attribut flags ce qui correspond à la valeur numérique 2) * le paquet reçu correspond a les flags
positionnés à RESET et ACK (Scapy affiche RA ce qui correspond à la valeur numérique 20) ⇒ le port 22 n'est pas ouvert.
<code python> »> rep[0][1][TCP].flags 20 »> </code> ==== Préciser plusieurs ports ==== Il est possible d'utiliser une
liste de valeurs pour les attributs des protocoles sous la forme : * dport=[80,443] pour indiquer une liste de ports : ici
uniquement les ports 80 et 446 ; * dport=(80,443) pour indiquer une plage de valeurs : ici les ports allant de 82 à 443.
===== Scan de port UDP=====

Rappel : Un port UDP est simplement en écoute car UDP ne gère pas
l'établissement de connexions.

==== Exemple de scan UDP pour déterminer si le service DNS est actif sur un hôte (en écoute) ==== Les paramètres à
utiliser * le nom/adresse IP du serveur DNS dans le paquet IP, * Le port UDP a utilisé et qui est 53 dans le segment UDP.
* il faut encapsuler les informations DNS sans préciser la requête de résolution de nom car il s'agit d'un simple scan.
Deux réponses sont possibles : * Si le port est ouvert et donc le service DNS est actif, l'application répond en UDP, * Si le
port est fermé, l'application répond avec un message d'erreur ICMP port-unreachable. <code python> »> paquet =
IP(dst='192.168.1.1') / UDP(dport=53) / DNS() »> rep, nonrep = sr(paquet) Begin emission: ..Finished to send 1 packets. ..
Received 5 packets, got 1 answers, remaining 0 packets »> rep.show() 0000 IP / UDP / DNS Qry =⇒ IP / UDP / DNS Ans /
Padding »> paquet = IP(dst='192.168.1.100') / UDP(dport=53) / DNS() »> rep, non_rep = sr(paquet) Begin emission:
..Finished to send 1 packets. . Received 4 packets, got 1 answers, remaining 0 packets »> rep.show() 0000 IP / UDP / DNS
Qry =⇒ IP / ICMP 192.168.1.100 > 192.168.1.159 dest-unreach port-unreachable / IPerror / UDPerror »> </code> ====
Retour à Python : la bibliothèque Scapy … ====

Python : la bibliothèque Scapy pour manipuler les paquets réseau

/lib/exe/detail.php/dev/python/scapy/tcp_connect.svg.png?id=dev%3Apython%3Ascapy%3Ascapyscanport-1
https://fr.wikipedia.org/wiki/Transmission_Control_Protocol#.C3.89tablissement_d.27une_connexion
/doku.php/dev/python/scapy/accueil

2026/01/18 01:30 3/3 Scan de ports avec Scapy

Les cours du BTS SIO - /

From:
/ - Les cours du BTS SIO

Permanent link:
/doku.php/dev/python/scapy/scapyscanport-1

Last update: 2017/11/04 22:42

/doku.php/dev/python/scapy/scapyscanport-1

	Scan de ports avec Scapy
	Quelques rappels (Linux)

