2026/02/07 09:13 1/5 Fabriquer des paquets réseaux avec Scapy

Fabriquer des paquets réseaux avec Scapy

Remarques préalables

e il n'est pas nécessaire de renseigner tous les champs. Ce sont alors les valeurs par défaut qui sont utilisées ;
® on encapsule simplement les couches réseaux (du modele OSl), des plus basses aux plus élevées avec I'opérateur / ;
e |a résolution DNS est automatique automatique.

Créer une trame simple Ethernet simple

e créer une trame en mémoire et 'afficher

trame Ether

trame.show
###[Ethernet]###
WARNING: Mac address to reach destination found. Using broadcast.
dst= ff:ff:ff:ff.ff:ff
src :00:00:00:
type

e Une trame éthernet est crée en instanciant la classe Ether().
o |a méthode show() de la classe affiche les informations de la trame. Comme aucun parametre n'est fourni, ce
sont les valeurs par défaut qui sont utilisées pour les attributs dst, src et type.

B0 0D 20 7TA 3F 3E BO 00 20 20 3A AE 08 00 P, ARP, elc D0 20 20 3A
Destination MAC Address Source MAC Address EtherType Payload CRC Checksum
MAC Header Data]
(14 bytes) (46 - 1500 bytes) {4 bytes)

Ethernet Type Il Frame
(64 10 1518 bytes)

e renseigner les attributs de la trame en ajoutant I'adresse MAC du destinataire : <code python>

trame.dsp = 'ac:84:¢9:db:fb:c0'trame.show()

>>> trame.dst="'ac:84:¢9:db:fb:c0'
trame.show()
#

##[Ethernet J### dst= ac:84:c9:db:fb:c0 src= 00:00:00:00:00:00 type= 0x9000

Il est bien sur possible de préciser cette adresse MAC a la création de la trame : <code python>

trame = Ether(dst="'ac:84:c9:db:fb:c0')

/code>

Les cours du BTS SIO -/

Last update: 2018/11/06 11:53 dev:python:scapy:scapypaquet-1 /doku.php/dev/python/scapy/scapypaquet-1?rev=1541501612

e Envoi de la trame Ethernet sur le réseau. Utilisation de la fonction sendp() : <code python>

sendp(trame)

Sent 1 packets.

<

/code>

Le point “.” représente un envoi.

La trame Ethernet a été envoyée mais :

e c'est une coquille vide
e car cette trame ne contient aucune donnée.

Il faut maintenant encapsuler des données d'un protocole des couches supérieures dans cette trame vide.

La commande sendp() permet d'envoyer un paquet créé (forgé) a partir du niveau 2 (couche Ethernet).

La commande send() permet d'envoyer un paquet créé (forgé) a partir du niveau 3 (couche IP). Les informations du niveau 2 (la couche
ethernet) sont alors automatiquement renseigné par scapy.

Créer une trame Ethernet contenant un paquet ICMP

La commande ping qui utilise le protocole ICMP permet :

e d'envoyer un paquet ICMP echo-request a un héte distant,
e et aindiquer si un paquet ICMP echo-reply a été renvoyé.

e création d'un paquet ICMP echo-request :

ping = ICMP
ping.show
#H##[ICMP] ###

type- echo-request

code

chksum= None

id

seq

Par défaut, I'instanciation de la classe ICMP() met le type du ping a echo-request.

Page Wikipedia sur le protocole ICMP :

o https://fr.wikipedia.org/wiki/Internet_Control_Message Protocol

/ Printed on 2026/02/07 09:13

https://fr.wikipedia.org/wiki/Internet_Control_Message_Protocol

2026/02/07 09:13 3/5 Fabriquer des paquets réseaux avec Scapy

Quelques précisions sur le fonctionnement du protocole ICMP :
e ICMP se situe au méme niveau que le protocole IP,

e mais qu'il soit a un niveau équivalent au protocole IP, un paquet ICMP doit néanmoins étre encapsulé dans un
datagramme IP.

Pour envoyer un paquet ICMP, il faut :

e encapsuler le paquet ICMP dans un datagramme IP,
e encapsuler a son tour le datagramme IP dans une trame Ethernet.

Avec Scapy, I'encapsulation entre protocoles se réalise avec I'opérateur / (slash).

o Création d'une trame Ethernet encapsulant un paquet ICMP destiné a étre envoyé a I'adresse 192.168.1.1 (Box Internet) :
<code python>

trame = Ether() / IP(dst='192.168.1.1") / ICMP()trame.show()

#
##[Ethernet |### dst= ac:84:¢9:db:fb:c0 src= 00:15:5d:01:¢6:02 type= 0x800 ###[IP]### version= 4 ihl= None tos= 0x0

len= None id= 1 flags= frag= 0 ttl= 64 proto= icmp chksum= None src= 192.168.1.159 dst= 192.168.1.1 \options\ ###[ICMP
1#4## type= echo-request code= 0 chksum= None id= 0x0 seq= 0x0

<

/code>

Seule 'adresse IP du destinataire a été renseignée. Cependant Scapy a compléter automatiquement les autres
champs :

e pour les informations de la couche 2 Ethernet :
o les adresses MAC source et destination : attributs dst et src
o |e type de trame Ethernet : attribut type
e pour la couche 3 IP:
o les adresses IP source et destination
o |es autres informations de la couche 3.

e envoi de la trame Ethernet : <code python>

sendp(trame)

Sent 1 packets.

<

/code>

Le paquet est envoyé mais aucune réponse n'est recue. Pour cela il faut utiliser les fonctions suivantes qui
permettent d'envoyer la trame et de recevoir la réponse :

o srp() qui renvoie deux objets :

Les cours du BTS SIO -/

Last update: 2018/11/06 11:53 dev:python:scapy:scapypaquet-1 /doku.php/dev/python/scapy/scapypaquet-1?rev=1541501612

= |e premier contient les paquets émis et leurs réponses associées,
= |'autre contient les paquets sans réponse.
o srpl() fonction plus simple car ne renvoie renvoie gu'un seul objet, la premiére réponse.

rep, non rep = srp(trame
Begin emission:
..Finished to send packets.
*

Received 4 packets, got 1 answers, remaining 0 packets

rep
Results: TCP:0 UDP:0 ICMP:1 Other:
non_rep

Unanswered: TCP:0 UDP:0 ICMP:0 Other:

Avec Scapy :

® un point “.” représente un envoi,

e une étoile ““ représente une réponse. </WRAP> Il y a une réponse et zéro échec. Ce plus la réponse est
un paquet ICMP. Pour visualiser le contenu de la réponse, il suffit de regarder le contenu de la
variable rep : <code python> »> rep.show() 0000 Ether /IP /ICMP 192.168.1.159 > 192.168.1.1 echo-
request 0 == Ether /IP /ICMP 192.168.1.1 > 192.168.1.159 echo-reply 0 / Padding »> </code> La
variable rep contient une liste de couples de paquets : * le paquet envoyé, * et le paquet recu (la
réponse). Ici il n'y a qu'un seul couple de paquets puisqu'il n'y a qu'un seul envoi et une seule
réponse. La variable rep est une liste et est manipulable comme une liste en python. Le résultat est
un couple (tuple a deux valeurs) : * on affiche le paquet émis (le ICMP echo-request) avec
rep[0][0].show(), * et on affiche le paquet recu en réponse avec rep[0][1].show(). <code python> »>
rep[0] (<Ether type=0x800 |<IP frag=0 proto=icmp dst=192.168.1.1 |<ICMP |»>, <Ether
dst=00:15:5d:01:¢c6:02 src=ac:84:c9:db:fb:c0 type=0x800 |<IP version=4 ihl=5 tos=0x0 len=28
id=43315 flags= frag=0 ttI=64 proto=icmp chksum=0x4dbd src=192.168.1.1 dst=192.168.1.159
options=[] |<ICMP type=echo-reply code=0 chksum=0xffff id=0x0 seq=0x0 |<Padding
load="'1x00\x00\x00\x00\x00\1x00\x001x00\x00\x001x00\x001x00\x00\x00\x00\x00\x00" |»») »>
rep[0][0].show() ###[Ethernet]### dst= ac:84:c9:db:fb:c0 src= 00:15:5d:01:¢c6:02 type= 0x800 ###[
IP]J##4# version= 4 ihl= None tos= 0x0 len= None id= 1 flags= frag= 0 ttl= 64 proto= icmp chksum=
None src= 192.168.1.159 dst= 192.168.1.1 \options\ ###[ICMP]J### type= echo-request code= 0
chksum= None id= 0x0 seq= 0x0 »> rep[0][1].show() ###[Ethernet]J### dst= 00:15:5d:01:c6:02 src=
ac:84:c9:db:fb:c0 type= 0x800 ###[IP]### version= 4 ihl= 5 tos= 0x0 len= 28 id= 43315 flags= frag=
0 tti= 64 proto= icmp chksum= 0x4dbd src= 192.168.1.1 dst= 192.168.1.159 \options\ ###[ICMP]#i##
type= echo-reply code= 0 chksum= Oxffff id= 0x0 seq= 0x0 ###[Padding]### load=
'1x001x001x001x001x001x001x001x00\x00\x00\x00\x00\x00\x001x001x001x00\x00' »> </code> * pour ne
visualiser que le paquet ICMP : <code python> »> rep[0][1][ICMP].show() ###[ICMP]### type= echo-
reply code= 0 chksum= Oxffff id= 0x0 seq= 0x0 ###[Padding]### load=
'|x00\x00\x00\x00\x001x00)x00\x00\x00\x00\x00\x00\x00\x001x001x00\x00\x00' »> </code>

Important pour la suite :

o quand il y a une réponse, Scapy indique que le type est echo-reply,

o en fait le champ type contient alors la valeur 0 : type = 0 ! pour indiquer qu'il y a une
réponse

o revoir la page ICMP de Wikipedia a ce sujet :
https://fr.wikipedia.org/wiki/Internet_Control_Message_Protocol

rep ICMP].type

Utilisation de la fonction srp1() qui ne renvoie qu'un seul objet, la premiére réponse : <code python> »> rep =
srpl(trame) Begin emission: .Finished to send 1 packets. ..* Received 4 packets, got 1 answers, remaining 0
packets »> rep.show() ###[Ethernet]### dst= 00:15:5d:01:c6:02 src= ac:84:c9:db:fb:c0 type= 0x800 ###[IP
1#4## version= 4 ihl= 5 tos= 0x0 len= 28 id= 43316 flags= frag= 0 ttl= 64 proto= icmp chksum= 0x4dbc src=
192.168.1.1 dst= 192.168.1.159 \options\ ###[ICMP 1### type= echo-reply code= 0 chksum= 0xffff id= 0x0
seq= 0x0 ###[Padding]### load=
"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' »> </code> ====== Créer un
datagramme IP contenant un paquet ICMP ====== Sj on ne s'intéresse qu'a la partie IP des paquets a gérer,
on utilise alors les fonctions suivantes sans s'occuper du niveau 2 Ethernet qui est alors automatiquement
renseigné par Scapy : * send() équivalent a sendp(), * sr() équivalent a srp(), * sr1() équivalentes a srpl1().

/ Printed on 2026/02/07 09:13

https://fr.wikipedia.org/wiki/Internet_Control_Message_Protocol

2026/02/07 09:13 5/5 Fabriquer des paquets réseaux avec Scapy

<code python> »> paquet = IP(dst='192.168.1.1") / ICMP() »> rep = srl(paquet) Begin emission: ..Finished to
send 1 packets. .* Received 4 packets, got 1 answers, remaining 0 packets »> rep.show() ###[|P [### version=
4 ihl= 5 tos= 0x0 len= 28 id= 43318 flags= frag= 0 ttl= 64 proto= icmp chksum= 0x4dba src= 192.168.1.1 dst=
192.168.1.159 \options\ ###[ICMP]### type= echo-reply code= 0 chksum= Oxffff id= 0x0 seq= 0x0 ###[
Padding 1### load= "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' »> </code>
====== Envoi d'un paquet sur un héte non existant ====== <code python> »> paquet =
IP(dst="'192.168.1.200') / ICMP() »> rep = srl(paquet) Begin emission:

... WARNING: Mac address to reach destination not found. Using broadcast.

.. ~C Received 371
packets, got 0 answers, remaining 1 packets »> AttributeError: 'NoneType' object has no attribute 'show' »> rep
»> </code>

Arrét de I'envoi (CTRL + C) apres quelques secondes et la variable rep est vide.

Il est possible de préciser une limite de temps en secondes a la fonction srl(). <code python> »> rep =
srl(paquet, timeout=0.5) Begin emisSion:cccceveriiiiiiiiieenniiiee e WARNING: Mac address to reach
destination not found. Using broadcast. Finished to send 1 packets. Received 67 packets, got 0
answers, remaining 1 packets »> </code>

Pour visualiser les autres parametres de la fonction srl() utiliser la commande:

help(srl

==== Retour a Python : |a bibliotheque Scapy ... ====

o Python : la bibliotheque Scapy pour manipuler les paquets réseau

From:
/ - Les cours du BTS SIO

Permanent link:
/doku.php/dev/python/scapy/scapypaquet-1?rev=1541501612

Last update: 2018/11/06 11:53

Les cours du BTS SIO -/

/doku.php/dev/python/scapy/accueil
/doku.php/dev/python/scapy/scapypaquet-1?rev=1541501612

	Fabriquer des paquets réseaux avec Scapy
	Remarques préalables
	Créer une trame simple Ethernet simple
	Créer une trame Ethernet contenant un paquet ICMP

