2026/01/19 20:02 1/5 Python : Traitement du signal audio avec Pyo

Python : Traitement du signal audio avec Pyo

Présentation

Lien :
e http://www.augmented-instruments.net/_media/pyo_as_python_dsp_toolbox.pdf
e Site Web : http://ajaxsoundstudio.com/software/pyo/
e Documentation : http://ajaxsoundstudio.com/pyodoc/

Pyo est un module Python dédié au traitement de signal audio en temps réel.

Sommaire

#!/usr/bin/python3
#-*- coding: utf-8 -*-

# Arnaud TECHER <arnaud.techer@laposte.net>
# SCEI 2019 N°43701
# Projet casque antibruit

wx,pyo,math, time

thread &
# classe pour le serveur audio
Serveur:

__init (self):

self.serveur=pyo.Server

#self.serveur.setOutputDevice(2)
#self.serveur.setInputDevice(2)

self.serveur.boot

#self.input = pyo.Input()

self.serveur.amp = 0.4
#parametre pour la generation du son

self.freqG pyo.Sine(freq=300, phase=0, mul=0.1, add=0).out(0
self.fregD pyo.Sine(freq=300, phase=0, mul=0.1, add=0).out(1l
# parametre pour l'enregistrement

self.enr = pyo.Input(chnl=0, mul=4.0

self.file "enregistrement tipe.wav"
self.serveur.recordOptions(filename=self.file, fileformat=0, sampletype=1

# creation de la classe de l'application
Fenetre(wx.Frame):
# le constructeur de la classe fenetre herite de wx.Frame,
# il faut appeler le constructeur de wx.Frame : wx.Frame. init ().
~_init (self, parent, id, title, pos, size
wx.Frame. init (self, parent, id, title,pos, size
self.parent parent

# var pour gerre slkider phase D
self.iSliderD 0

self.serveur
self.initialise

serveur(self):
self.audio Serveur

initialise(self):
# creation d'un menu
self.menu

# creation de l'interface

# creation du panel et des box
self.panel = wx.Panel(self

Les cours du BTS SIO -/


http://www.augmented-instruments.net/_media/pyo_as_python_dsp_toolbox.pdf
http://ajaxsoundstudio.com/software/pyo/
http://ajaxsoundstudio.com/pyodoc/

Last update: 2019/06/09 19:10 dev:python:pyo:accueil /doku.php/dev/python/pyo/accueil

mainSizer = wx.BoxSizer (wx.VERTICAL
boxFrequence = wx.BoxSizer (wx.VERTICAL
boxAmplitude = wx.BoxSizer (wx.HORIZONTAL
gBoxAmplitude = wx.BoxSizer(wx.VERTICAL
dBoxAmplitude = wx.BoxSizer(wx.VERTICAL
boxPhase = wx.BoxSizer(wx.HORIZONTAL
gBoxPhase = wx.BoxSizer (wx.VERTICAL
dBoxPhase = wx.BoxSizer (wx.VERTICAL
boxCommande = wx.BoxSizer(wx.HORIZONTAL

self.panel est le parent du widget,

wx.ID ANY pour laisser wxPython choisir un identifiant

wx.EXPAND pour agrandir la cellule si la fenetre est agrandie
ajout dans les boxSizer

Bind pour associer la méthode a exécuter a l’evenement du widget

H B R B H

# Gestion de la frequence

# label

self.labelFreq = wx.StaticText(self.panel,wx.ID ANY
label=u'Frequence'
style=wx.ALIGN CENTRE HORIZONTAL

boxFrequence.Add (self.labelFreq,0, wx.ALL | wx.EXPAND, 5

# slider

self.freq=wx.Slider(self.panel,wx.ID_ANY,value=300,minValue=50,maxValue=1000

pos=(0,0),size=(200,-1),style=wx.SL LABELS

boxFrequence.Add (self.freq,1, wx.ALL | wx.EXPAND, 5

mainSizer.Add (boxFrequence,1, wx.ALL | wx.EXPAND, 5

self.Bind (wx.EVT SLIDER, self.changeFreq

# Gestion de l'amplitude
# label gauche
self.glabelAmplitude = wx.StaticText(self.panel,wx.ID ANY
label=u'Amplitude gauche', style=wx.ALIGN RIGHT
gBoxAmplitude.Add(self.gLabelAmplitude,®, wx.ALL | wx.EXPAND, 5
# slider gauche
self.gAmplitude=wx.Slider(self.panel,wx.ID ANY,value=1,minValue=0,maxValue=10
pos=(0,0),size=(200,-1),style=wx.SL LABELS
gBoxAmplitude.Add(self.gAmplitude, 1, wx.ALL | wx.EXPAND, 5
boxAmplitude.Add (gBoxAmplitude, 1, wx.ALL | wx.EXPAND, 5
self.Bind (wx.EVT SLIDER, self.gChangeAmplitude, self.gAmplitude
# label droite
self.dLabelAmplitude = wx.StaticText(self.panel,wx.ID ANY
label=u'Amplitude droite', style=wx.ALIGN RIGHT
dBoxAmplitude.Add (self.dLabelAmplitude, 0, wx.ALL | wx.EXPAND, 5
# slider droite
self.dAmplitude=wx.Slider(self.panel,wx.ID ANY,value=1,minValue=0,6maxValue=10
pos=(0,0),size=(200,-1),style=wx.SL LABELS
dBoxAmplitude.Add (self.dAmplitude,1, wx.ALL | wx.EXPAND, 5
boxAmplitude.Add(dBoxAmplitude,1, wx.ALL | wx.EXPAND, 5
self.Bind (wx.EVT SLIDER, self.dChangeAmplitude, self.dAmplitude
#ajout dans box main
mainSizer.Add (boxAmplitude,1, wx.ALL | wx.EXPAND, 5

# Gestion de la phase gauche

# label gauche

self.glabelPhase = wx.StaticText(self.panel,wx.ID ANY

label=u'Phase gauche'

gBoxPhase.Add (self.glLabelPhase, 0, wx.ALL | wx.EXPAND, 5

# slider phase G

self.gPhase=wx.Slider(self.panel,wx.ID ANY,value=0,minValue=0,maxValue=100
pos=(0,0),size=(200,-1),style=wx.SL LABELS

gBoxPhase.Add (self.gPhase, 1, wx.ALL | wx.EXPAND, 5

boxPhase.Add (gBoxPhase,1, wx.ALL | wx.EXPAND, 5

self.Bind (wx.EVT SLIDER, self.gChangePhase, self.gPhase

# label droite

self.dLabelPhase = wx.StaticText(self.panel,wx.ID ANY,label=u'Phase droite'

dBoxPhase.Add(self.dLabelPhase, 0, wx.ALL | wx.EXPAND, 5

# Gestion de la phase droite

self.dPhase=wx.Slider(self.panel,wx.ID ANY,value=0,minValue=0,maxValue=100
pos=(0,0),size=(200,-1),style=wx.SL LABELS

/ Printed on 2026/01/19 20:02



2026/01/19 20:02 3/5 Python : Traitement du signal audio avec Pyo

dBoxPhase.Add (self.dPhase, 0, wx.ALL | wx.EXPAND, 5
boxPhase.Add (dBoxPhase, 1, wx.ALL | wx.EXPAND, 5
self.Bind (wx.EVT_SLIDER, self.dChangePhase, self.dPhase
#ajout dans box main

mainSizer.Add (boxPhase,1, wx.ALL | wx.EXPAND, 5

# Gestion graphique du Scope dans une fenetre separee
self.gscope pyo.Scope(|self.audio.freqG, self.audio.freqD

# Gestion des boutons de commande

#bouton star/stop

self.boutonStart = wx.Button(self.panel,wx.ID ANY, label="Start"
boxCommande.Add (self.boutonStart,1, wx.ALL | wx.EXPAND, 5
self.Bind (wx.EVT BUTTON, self.start, self.boutonStart

#bouton enregistrement

self.boutonEnr = wx.Button(self.panel,wx.ID ANY,label="Enr"
boxCommande.Add (self.boutonEnr,1, wx.ALL | wx.EXPAND, 5
self.Bind (wx.EVT BUTTON, self.enregistrement, self.boutonEnr

#bouton auto

self.boutonAuto = wx.Button(self.panel,wx.ID ANY, label="Auto"
boxCommande.Add (self.boutonAuto,1, wx.ALL | wx.EXPAND, 5
self.Bind(wx.EVT_BUTTON, self.auto, self.boutonAuto

# ajout box main
mainSizer.Add (boxCommande,1, wx.ALL | wx.EXPAND, 5

self.panel.SetSizerAndFit(mainSizer

changeFreq(self, event):
# modifier les frequences gauche et droite
self.audio.freqgG.setFreq(event.GetInt
self.audio.fregD.freqg=event.GetInt

gChangeAmplitude(self, event):
# modifier l'attribut mul
self.audio.freqG.mul=event.GetInt()/10

dChangeAmplitude(self, event):
# modifier l'attribut mul
self.audio.fregD.mul=event.GetInt()/10

gChangePhase (self, event):
# modifier l'attribut phase
self.audio.freqG.setPhase(event.GetInt()/100

dChangePhase (self, event):
# modifier l'attribut phase
self.audio.freqD.setPhase(event.GetInt()/100

start(self, event):

# demarer / arreter le serveur audio
self.boutonStart.GetLabel "Start":
self.audio.serveur.start
self.boutonStart.SetLabel("Stop"

self.audio.serveur.stop
self.boutonStart.SetLabel("Start"

enregistrement(self, event):

# demarrer / arreter l'enregistrement
self.boutonEnr.GetLabel "Enr":
self.audio.serveur.recstart
self.boutonEnr.SetlLabel("Fin enr"

self.audio.serveur.recstop
self.boutonEnr.SetLabel ("Enr"

auto(self, event

Les cours du BTS SIO -/



Last update: 2019/06/09 19:10 dev:python:pyo:accueil /doku.php/dev/python/pyo/accueil

# demarrer / arreter la variation automatique de la phase droite

it self.boutonAuto.GetLabel "Auto":
self.boutonAuto.SetLabel ("Auto actif"
duree = 0.01
self.t Intervallometre(duree, self.augmenter

self.t.setDaemon(True
self.t.start

else:
self.boutonAuto.SetlLabel ("Auto"
self.iSliderD=0
self.audio.freqD.setPhase(0
self.t.stop

def augmenter(self):
# augmenter la phase
1t self.iSliderD 100:
self.iSliderD += 1
self.audio.freqD.setPhase(self.iSliderD/100
self.dPhase.SetValue(self.iSliderD

def menu(self):
# generation du menu
filemenu= wx.Menu

# wx.ID ABOUT et wx.ID EXIT sont des IDs standards pour les wxWidgets.

menuApropos filemenu.Append(wx.ID ABOUT, "&A propos","Information sur ce programme
filemenu.AppendSeparator

menuQuitter = filemenu.Append(wx.ID EXIT,"&Quitter"," Quitter le programme"

# Creation du menu.

menuBar = wx.MenuBar

menuBar.Append (filemenu, "&Fichier") # Ajout de "filemenu" a la barre de Menu
self.SetMenuBar(menuBar) # Ajout de la bare de menu au contenu de la fenetre

# lier les evenements aux methodes
self.Bind (wx.EVT MENU, self.OnApropos, menuApropos
self.Bind(wx.EVT_MENU, self.OnQuitter, menuQuitter

def OnApropos(self,event):
# Afficher une boite de dialogue avec un bouton OK. wx.0OK est un ID standard des wxWidgets.
dlg = wx.MessageDialog( self, "Arnaud TECHER - TIPE 2019", "Gestion des haut-parleurs", wx.0K
dlg.ShowModal() # afficher la bopite de dialogue par dessus la fenetre
dlg.Destroy() # detruire la bopite de dialogue quand on clique sur OK ou que l'on, la ferme.

def OnQuitter(self,event):
# arreter le moteur audio
self.serveur.serveur.stop
self.Close(True) # fermer la frenetre.

if _ name " main_ ":
app = wx.App
fenetre 1 = Fenetre(None,wx.ID ANY, 'Pannel sonl' 50,50 1000, 600
# faire apparaitre la fenetre
fenetre 1.Show
# boucle infinie qui attend les evenements utilisateur
app.MainLoop

#!/usr/bin/python3
#-*- coding: utf-8 -*-

# Arnaud TECHER <arnaud.techer@laposte.net>
# SCEI 2019 N°43701

# Gestion d'un thread

import threading

class Intervallometre(threading.Thread):

def init (self, duree, fonction, args kwargs

/ Printed on 2026/01/19 20:02



2026/01/19 20:02 5/5

Python : Traitement du signal audio avec Pyo

threading.Thread. init (self

self.duree duree

self.fonction fonction

self.args = args
self.kwargs kwargs

self.encore = True # pour permettre l'arret a la demande

run(self):
self.encore:

self.timer = threading.Timer(self.duree
self.timer.setDaemon(True

self.timer.start
self.timer.join

stop(self):

self.fonction, self.args, self.kwargs

self.encore False # pour empecher un nouveau lancement de Timer et terminer le thread

self.timer.isAlive
self.timer.cancel

From:
/ - Les cours du BTS SIO

Permanent link
/doku.php/dev/python/pyo/accueil

Last update: 2019/06/09 19:10

# pour terminer une eventuelle attente en cours de Timer

Les cours du BTS SIO -/


/doku.php/dev/python/pyo/accueil

	Python : Traitement du signal audio avec Pyo
	Présentation
	Sommaire


