
2026/01/11 03:20 1/2 Utiliser les bases de données avec Python

Les cours du BTS SIO - /

Utiliser les bases de données avec Python

Se connecter à la base de données

Télécharger et installer le connecteur MySQL pour Python à l'adresse http://dev.mysql.com/downloads/connector/python/ (le fichier est dans
le dossier partagé Progs)

import mysql.connector
serveur = "10.187.36.203" # nom ou numéro IP du serveur
login = 'btssio' # login de connexion
pwd = 'btssio' # Mot de passe pour la connexion
base = 'glpi' #nom de la base de données

#Connexion a la base
bdd=mysql.connector.connect(user=login, password=pwd, host=serveur, database=base)

Gérer les exceptions

S'il y a une erreur à la connexion (serveur indisponible, erreur de login ou de mot de passe, base de données inconnue), le programme
python génère une exception et s'arrête.

Il est donc pertinent de gérer ces erreurs et de gérer quelle erreur est survenue sans arrêter l'exécution du programme python.

Pour cela, il faut mettre dans un bloc try les instructions à tester et dans except les instructions à exécuter en cas d'erreur.

Syntaxe de base :

try:
 # Bloc à essayer
except:
 # Bloc qui sera exécuté en cas d'erreur

Mise en œuvre

#Connexion a la base
try:
 connexion=mysql.connector.connect(user=login, password=pwd, host=serveur, database=base)
except mysql.connector.Error as err:
 if err.errno == mysql.connector.errorcode.ER_DBACCESS_DENIED_ERROR:
 print("Base inconnue")
 elif err.errno == mysql.connector.errorcode.ER_ACCESS_DENIED_ERROR:
 print("Erreur login ou pwd")
 else:
 print(err)

print("connexion réussie")

Le bloc except permet de gérer précisément le type d'erreur en récupérant le numéro d'erreur puis en l'utilisant pour préciser l'erreur. Il
faut dans ce cas savoir quels sont les numéros d'erreur possibles.

Pour le savoir consultez l'aide du module.

Aide sur le module :

help ('mysql.connector')

Aide sur les erreurs du module

help ('mysql.connector.errorcode')

http://dev.mysql.com/downloads/connector/python/

Last update: 2014/11/09 22:36 dev:python:bdd /doku.php/dev/python/bdd

/ Printed on 2026/01/11 03:20

Exécuter une requête

L'exécution d'une requête qui renvoie plusieurs tuples (lignes, enregistrement) nécessite d'utiliser un curseur.

cursor=connexion.cursor() #Definition du curseur
requeteSQL= "Select * from eleve" # Definition de la requête
cursor.execute(requeteSQL) # Execution de la requête
resultat = cursor.fetchall() #Recuperation des donnees

Si votre requête ne retourne aucun résultat, ce qui est le cas d'une requête de mise à jour (update) ou de création d'enregistrement
(insert), il n'est pas nécessaire d'utiliser la méthode fetchall().

Utilisation des données

Une boucle est nécessaire pour récupérer les données ligne par ligne.

for row in resultat:
 print(row[0]) # champ 1 du select
 print(row[1]) # champ 2 du select
 print(row[2]) # champ 3 du select

Fermeture de la connexion

cursor.close() #Fermeture du curseur
connexion.close() #Deconnexion de la base

Projet à réaliser

Modifiez votre programme Python WOL afin de récupérer dans la base de données de GLPI l'adresse MAC d'un ordinateur à partir de son
nom. De cette manière, il suffira de saisir le nom du poste dans votre programme Python pour récupérer dans la base GLPI, son adresse
MAC.

Les tables GLPI à utiliser sont glpicomputers (liste des ordinateurs) et glpicomputersdevicenetworkcards (choisissez l'adresse
MAC de la carte réelle - physique) ===== Utiliser une classe pour simplifier le code ===== La classe de base d'accès aux
données : <code python> class connexionBD: “”“Connexion à la base de donnee”“” def init(self): # Création d'une
connexion à la base import mysql.connector self.serveur = “10.187.36.203” self.login = “btssio” self.pwd = “btssio”
self.base = “glpi” self.connection = mysql.connector.connect(user=self.login, password=self.pwd, host=self.serveur,
database=self.base) self.cursor = self.connection.cursor() def close(self): #! Ferme la connexion self.cursor.close()
self.connection.close() def execute(self, requete): #! Execute la requete MySQL et retourne le resultat
self.cursor.execute(requete) return self.__cursor.fetchall() </code> ===== Insérer des données ===== Exemple : créer un
enregistrement élève : <code python> connexion = connexionBD() requete = “INSERT INTO eleve (nom, prenom)
VALUES('Dupond','Raymond')” # La requete est toujours un string connexion.execute(requete) connexion.close() </code>
===== Modifier des donnés ===== Exemple : modifier le prénom : <code python> connexion = connexionBD() requete =
“UPDATE eleve SET prenom='Paul' WHERE nom='Dupond' connexion.execute(requete) connexion.close() </code> =====
Lire des données ===== Exemple : Liste des élèves : <code python> connexion = connexionBD() resultat =
connexion.execute(“SELECT * FROM eleve”) i = 1 for row in resultat: print(“enregistrement ” + str(i)) for champ in row: #
Ecrit tous les champs de chaque ligne print (“Champ :” + str(champ)) i+=1 connexion.close() </code>

From:
/ - Les cours du BTS SIO

Permanent link:
/doku.php/dev/python/bdd

Last update: 2014/11/09 22:36

/doku.php/dev/python/bdd

	Utiliser les bases de données avec Python
	Se connecter à la base de données
	Gérer les exceptions
	Syntaxe de base :
	Mise en œuvre
	Aide sur le module :
	Aide sur les erreurs du module

	Exécuter une requête
	Utilisation des données
	Fermeture de la connexion

	Projet à réaliser

