2026/02/18 18:43 1/6 JSON Web Token

JSON Web Token

Description

Un Json Web Token (JWT) est un standard utilisé pour I'authentification et I'autorisation dans les applications qui permet de
transmettre de maniére sécurisée des informations entre deux parties, généralement une application cliente et un serveur.

Un token JWT est un objet JSON encodé en base64 qui contient des informations liées a I'identité du client et a ses droits d'acces.

what'' : "I50N"3

% A File Format+o store data in Key: value format

{ /,,cm be shing

HH’E.*j' " Tyvaluel ",

or ligh

has . ! " L i .
ﬁe | ney2 ; . [vall - val2"],ﬂ““ﬂ ot Jeon

Sh"lnﬂ Htj 3 ' : {
Nested Json

[Json, Jsen]
> or lish of Tew

another Tson

Les JWT sont souvent utilisés pour |'authentification en tant que jeton d'accés, ce qui permet a I'application cliente de réaliser des
opérations sur les ressources protégées sur le serveur sans avoir a demander de nouvelles informations d'identification. Lorsqu'un
utilisateur se connecte avec succes sur l'application, le serveur génére un JWT et I'envoie au client, qui peut alors utiliser ce jeton pour
accéder a des ressources du serveur.

| [o—¢

| [—=*
ID SevYveTr

[Validate

e e d,ﬂ T 'H":'-.ll 5

I 9 Crente & Lign

Twl wibh Secrel

Illrl'lj..] D.IJJ.' ES

Signature DK

Le JWT est composé de trois parties, séparées par un point :

o Header : le header décrit le type de JWT et l'algorithme utilisé pour signer le JWT. Il est encodé en base64 ;
e Payload : le payload contient les informations liées au client, comme son identité et ses droits d'accés. Il est également encodé en

Les cours du BTS SIO -/

Last update: 2025/08/04 15:26 cyber:vulnerabilite:json_web_token /doku.php/cyber/vulnerabilite/json_web_token

base64 ;
e Signature : la signature est utilisée pour s'assurer que le JWT n'a pas été altéré de maniere non autorisée. Elle est calculée en
utilisant la clé secrete du serveur sur le contenu du header et du payload du JWT. Elle est également encodée en base64.

7Y JWT Structure

o I e s |

Signature

=L
Baca |:~‘-'|- encode Base é4 encode Baseé4 encode
AL Y SN

_— e e o e e —— e = e

4o
| abclzaa 924012108 @ C2b212

el T — — —— G S

3 parts concatenated wibh d::+

Il existe deux algorithmes couramment utilisés pour signer les JWT : RSA et HMAC :

o RSA (Rivest-Shamir-Adleman) : RSA est un algorithme de chiffrement asymétrique qui utilise une paire de clés publique/privée
pour chiffrer et déchiffrer les données. Pour signer un JWT avec RSA, le serveur utilise sa clé privée pour générer la signature. Le
client peut vérifier la signature en utilisant la clé publique du serveur.

o HMAC (Keyed-Hash Message Authentication Code) : HMAC est un algorithme de hachage symétrique qui utilise une clé
secréte partagée pour générer un hachage de message. Pour signer un JWT avec HMAC, le serveur utilise la clé secréte pour
générer la signature. Le client peut vérifier la signature en utilisant la méme clé secréte.

provider :--MF

S-jrnmehic. Key

!"ngn Juwr
= # HMAC

. - N
—
D‘Mﬂd; widh

TaT

prﬂwdgr ‘ {h f C!HI"I'

Shaved Key

Prérequis d'exploitation

Pour exploiter cette famille de vulnérabilité, il est nécessaire d'avoir acces a une application se basant sur des JWT pour garantir
I'authentification des clients.

/ Printed on 2026/02/18 18:43

2026/02/18 18:43 3/6 JSON Web Token

Connaissances nécessaires

e Comprendre les cas d'usages des JWT sur les applications ;
e Maitriser la structure des JWT ;
e Maitriser un langage de programmation a des fins d'automatisation de certains calculs/actions.

Outils nécessaires

o Utilisation d’outils de type Burp Suite ou curl pour la création/modification de requétes HTTP ;
e |langage de programmation pour la manipulation des JWT (par exemple Python).

Flux d'exécution

Explorer

Naviguer sur |'application afin d'identifier les différents mécanismes d'authentification utilisés pour I'accés aux ressources. La présence d'un
JWT sur un cookie de session peut étre un indicateur pertinent de |'utilisation de ce dernier pour authentifier le client.

Expérimenter

Analyser la structure du JWT, identifier I'algorithme utilisé, les données du payload, etc. L'objectif ici est de tester différentes attaques
connues en lien avec de mauvaises vérifications du JWT par le serveur lors de 'accés a des ressources.

Exploiter

Conséquences potentielles

L'exploitation réussie de ce type de vulnérabilité peut permettre :

® |'acces a des ressources sensibles ;
® |'acces a des fonctionnalités sensibles.

Contre-mesures

Les contre-mesures suivantes peuvent étre mises en ceuvre :

o Utiliser un secret et un algorithme forts : la signature d'un JWT est utilisée pour s'assurer que le JWT n'a pas été altéré de
maniére non autorisée. Il est important d'utiliser un secret ainsi qu'un algorithme forts pour le calcul de la signature, comme
I'algorithme HMAC SHA256 ou RSA.

o Vérifier la signature du JWT : pour considérer un JWT comme valide, il est important de s'assurer que sa signature est valide.

o Vérifier le payload du JWT : avant d'accorder un accés basé sur les données du payload présent dans le JWT, il est important de
vérifier que ces données sont valides et attendues. Par exemple, si le JWT contient une donnée indiquant que I'utilisateur est un
administrateur, il est important de s'assurer que cela est vrai avant de Iui accorder des priviléges d'administrateur.

o Transmettre les JWT de maniére sécurisée : pour éviter que les JWT ne soient volés et réutilisés, il est important de les
transmettre de maniére sécurisée, en utilisant une connexion sécurisée (HTTPS) par exemple.

Comment cela fonctionne

Les scénarios suivants peuvent étre joués via I'exploitation de cette vulnérabilité :

e Vol de jeton : si un attaguant réussi a obtenir un JWT valide, il peut accéder aux ressources protégées sur le serveur en utilisant ce
dernier ;

o Secret faible : si le secret utilisé lors de la signature du JWT est faible, un attaquant peut alors essayer de deviner ce secret afin de
créer un JWT falsifié et ainsi accéder a des ressources protégées ;

e Signature non vérifiée : si le serveur ne réalise pas de vérification de la signature du JWT, un attaquant sera en mesure de
facilement modifier le payload afin d'avoir acces a de nouvelles ressources.

Les cours du BTS SIO -/

Last update: 2025/08/04 15:26 cyber:vulnerabilite:json_web_token /doku.php/cyber/vulnerabilite/json_web_token

/\
Somehow :
qot access
18
& W
Public Key
used .
ﬂgummdl’lﬁ oy

| Hushing

Exemple 1

Voici un exemple de code Python qui consiste a exploiter une attaque type “brute-force” permettant de voir si la signature du JWT a été
signée avec un secret faible :

jwt
jwt string
"eyJhbGci0iAiSFMyNTYiLCAidH1lwIjogIkpXVCJ9.eyJzdWIi0iAiMjQ4Mjg5NzYxIiwgIm5hbWUi0iAiSm90obiBEb2UiLCAiaWFOI]
0gMTUzNzg3MjAwMHO .8f928de2afee05bce432f166d140a04a29a7fc00e72c510cf56ec738cc7eb075"

liste de secrets
passwords "123456", "password", "letmein", "monkey", "qwerty"

password passwords:

décodage du JWT avec le secret
jwt.decode(jwt string, password, verify=True

en cas de décodage réussi
'Secret trouvé'
exit(1

'Secret non trouvé'

Dans ce code, nous commengons par définir le jeton JWT a attaquer, puis un tableau contenant les différents secrets a tester. Dans le cas ou
le secret testé n'est pas valide, le message “Secret non trouvé” est affiché. Ce code va donc tester de signer le token avec plusieurs
secrets, jusqu'a trouver le secret original qui a servi a signer le token.

Exemple 2

Voici un exemple de code Python qui présente comment exploiter une vulnérabilité liée aux JWT en utilisant un JWT sans signature :
jwt

JWT avec une signature "none"
jwt string

"eyJhbGci0iAibm9uzSIsICIOeXA10iAiS1dUING. ey]zdWIi0iAiMjQ4Mjg5NzYXxIiwgIn5hbWUi0iAiSm9obiBEL2UiLCAiaWFOIjo
gMTUZNZg3Mj AWMHO . "

tentative d'acceés

décodage du JWT
jwt.decode(jwt string, verify=True

en cas de décodage réussi
'Secret trouvé'
exit(1l

Printed on 2026/02/18 18:43

2026/02/18 18:43 5/6 JSON Web Token

jwt.exceptions.InvalidSignatureError:
echec de la vérification de la signature

Dans ce code, nous commencons par définir le jeton JWT avec un algorithme de signature a “none”. Ensuite, nous regardons si l'acces a une
ressource sur le serveur avec ce jeton est possible.

Si le code coté serveur accepte que l'algorithme utilisé dans le header du JWT puisse étre mis a “none”, alors il n'y a pas besoin de signer.
Ainsi le serveur ne vérifiera pas si la signature est correcte par rapport au header et au payload du token.

Exemple 3

Voici un exemple de code Python qui présente comment exploiter une vulnérabilité liée aux JWT en altérant le contenu du JWT grace a une
clé publique que I'attaquant a obtenu :

jwt
rsa

jwt_string
"eyJhbGci0iAiUTMyNTYiLCAidH1IwIjogIkpXVCJ9.eyJzdWIi0iAiMjQ4Mjg5NzYxIiwgIm5hbWUi0iAiSm90obiBEb2UiLCAiaWFOI]
0gMTUzNzg3MjAwMHO .8f928de2afee05bce432f166d140a04a29a7fc00e72c510cf56ec738cc7eb075"

public_key string fo---- BEGIN PUBLIC KEY----- [...]----- END PUBLIC KEY----- !

utilisation de la clé publique
public key rsa.PublicKey.load pkcsl(public key string

modification du JWT (changement du nom de l'utilisateur)
jwt string modified jwt string[:66] + "eyJuYW1lIjogIkpvaG4gRGILIE1vZGlmaWVKIn®." + jwt string[100:

L'attaquant tente de décoder le JWT en utilisant 1'algorithme HMAC SHA256 au lieu de l'algorithme RSA

décodage du JWT avec la clé publique
jwt decoded = jwt.decode(jwt string modified, public key, verify=True
jwt.exceptions.InvalidSignatureError:
echec de la vérification de la signature
"La signature du JWT est valide. Accés refusé."

Dans ce code, I'attaquant a intercepté un JWT signé avec RSA et I'a modifié en changeant le nom de I'utilisateur. Il tente ensuite de décoder
le JWT modifié en utilisant la clé publique du serveur. Si le décodage réussit, cela signifie que le JWT a été altéré et que I'attaquant peut
accéder aux ressources d'un autre utilisateur.

CWEs

CWE-287 : Improper Authentication

When an actor claims to have a given identity, the software does not prove or insufficiently proves that the claim is correct.
CWE-1270 : Generation of Incorrect Security Tokens

The product implements a Security Token mechanism to differentiate what actions are allowed or disallowed when a transaction
originates from an entity. However, the Security Tokens generated in the system are incorrect.

References

URL :

https://portswigger.net/web-security/jwt
https://jwt.io/
https://pypi.org/project/PyJWT/
https://github.com/mazen160/jwt-pwn
https://github.com/ticarpi/jwt_tool

Les cours du BTS SIO -/

https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/1270.html
https://portswigger.net/web-security/jwt
https://jwt.io/
https://pypi.org/project/PyJWT/
https://github.com/mazen160/jwt-pwn
https://github.com/ticarpi/jwt_tool

Last update: 2025/08/04 15:26 cyber:vulnerabilite:json_web_token /doku.php/cyber/vulnerabilite/json_web_token

Retour fiches vulnérabilités

e Cyber fiches vulnérabilités

From:
/ - Les cours du BTS SIO

Permanent link:
/doku.php/cyber/vulnerabilite/json_web_token

Last update: 2025/08/04 15:26

Printed on 2026/02/18 18:43

/doku.php/cyber/vulnerabilite/accueil
/doku.php/cyber/vulnerabilite/json_web_token

	JSON Web Token
	Description
	Prérequis d'exploitation
	Connaissances nécessaires
	Outils nécessaires

	Flux d'exécution
	Explorer
	Expérimenter
	Exploiter

	Conséquences potentielles
	Contre-mesures

	Comment cela fonctionne
	Exemple 1
	Exemple 2
	Exemple 3

	CWEs
	References
	Retour fiches vulnérabilités

