2026/01/28 09:35 1/5 Cross-Site Request Forgery

Cross-Site Request Forgery

Description

Le {Cross-Site Request Forgery} (CSRF ou XSRF) est une technique d'attaque Web qui force un utilisateur authentifié sur
une application vulnérable a réaliser une action en abusant de la confiance qu'a I'application envers les requétes de ses

clients.

L'action forcée dépend du contexte, mais peut étre le changement de certains parametres du compte, le virement bancaire vers un compte
arbitraire ou encore I'attribution de nouveaux priviléges & un utilisateur de I'application. Etant donné que la cible est un utilisateur et non
I'application en elle-méme, cette attaque appartient a la famille des vulnérabilités dites “cété client”.

Ces attaques existent car les navigateurs envoient automatiquement les cookies associés aux sessions authentifiées, sans
vérifier I'origine de la requéte. Pour la réaliser, un utilisateur malveillant va héberger, au travers d'une page Web, un formulaire HTML
permettant d'effectuer la requéte réalisant I'action désirée. Ce formulaire est accompagné d'un script JavaScript qui va soumettre le
formulaire dés que la page est chargée.

<hl>Page hébergée sur hackerman.hack pour CSRF sur example.ex</hl>
<form action="https://example.ex/edit-account" method="post">
<input type="password" name="password" value="easypassl23">
<input type="password" name="confirm-password" value="easypassl23">
<button type="submit">Edit</button>
</form>
<script>
document.forms[0].submit();
</script>

Exemple de charge utilisée pour forcer le changement de mot de passe sur exemple.ex.

Si l'utilisateur qui consulte la page malveillante est authentifié sur I'application ciblée, la requéte contiendra son cookie de session. La
requéte est ensuite recue par le serveur qui ne fait pas de distinction entre une requéte légitime et malicieuse. Enfin, I'action désirée par

I'attaquant est effectuée.

L'attaque nécessite que la cible se dirige sur la page hébergée par I'attaquant. En général, c'est au travers des mails de phishing que le
CSRF est réalisé. Cependant, d'autres moyens peuvent étre utilisés pour diffuser I'attaque, notamment via un service de tickets interne ou
encore via une messagerie compromise d'un des employés de I'entreprise ciblée.

Aujourd'hui, plusieurs protections existent pour se protéger des attaques par CSRF. L'attaque étant peu connue des développeurs, celle-ci
reste donc trés présente dans les applications actuelles.

Pré-requis d’exploitation

Pour mettre en ceuvre cette attaque, il est nécessaire d'avoir accés au minimum a un compte de l'application a tester. Ce compte doit avoir
les priviléges nécessaires pour effectuer I'action vulnérable aux attaques CSRF.

Compétences nécessaires

e Connaissances de base du protocole HTTP ;
e Notions sur les langages JavaScript et HTML.

Outils nécessaires

® Accés a une console de navigateur ou a un outil de modification et/ou d'interception de requétes comme Burp Suite.
Flux d’exécution

Explorer

La détection d'un CSRF est assez simple, il suffit de parcourir les pages de I'application web avec un compte utilisateur Iégitime (idéalement
deux pour effectuer des tests) a la recherche de fonctionnalités intéressantes (transferts d’argent, changement de mot de passe, etc.) en

accord avec les points suivants :

Les cours du BTS SIO -/


http://december.com/html/4/element/h1.html
http://december.com/html/4/element/h1.html
http://december.com/html/4/element/form.html
http://december.com/html/4/element/input.html
http://december.com/html/4/element/input.html
http://december.com/html/4/element/button.html
http://december.com/html/4/element/button.html
http://december.com/html/4/element/form.html
http://december.com/html/4/element/script.html
http://december.com/html/4/element/script.html

Last update:

. ilite: i ili i rev=
2025/07/03 12:20 cyber:vulnerabilite:cross_site_request_forgery /doku.php/cyber/vulnerabilite/cross_site_request_forgery?rev=1751538013

e Une action exploitable : |'action réalisée doit étre sensible. Un CSRF sur un changement de filtre de recherche n'aura a priori
aucune répercussion utile pour I'attaquant, tandis qu'un changement d'adresse email est bien plus intéressant d'un point de vue
offensif ;

o L'authentification est basée uniquement sur un cookie : I'attaque par CSRF repose sur le fait de réaliser une requéte HTTP
sous le nom de la victime. Si I'application utilise d'autres facteurs de vérification pour effectuer I'action, il est probable que celle-ci
ne passe pas. Par exemple pour un virement bancaire vulnérable qui demanderait a I'utilisateur de confirmer celui-ci sur
I'application de son téléphone, rendant ainsi |'attaque impossible ;

o Le formulaire ne contient que des parameétres prédictibles : e formulaire ne doit pas envoyer de jeton particulier ou
d'informations imprédictibles. Une valeur imprédictible pour I'attaquant dans le formulaire rendrait I'attaque caduque, car
I'application n'accepterait pas d'effectuer I'action, un des champs étant erroné. Par exemple, un changement de mot de passe qui
demanderait I'ancien mot de passe pour réaliser le changement.

Expérimenter

Si I'on trouve une fonctionnalité qui respecte les trois points de I'étape précédente, il est relativement probable qu'un CSRF soit possible.
Pour s'en assurer totalement, il est nécessaire de le tester. Pour cela, le mieux est d'utiliser deux comptes obtenus légitimement. L'un
servira a mettre en place |'attaque, I'autre a tester :

e Créer le code HTML / JavaScript qui permet d'effectuer automatiqguement I'action ciblée avec des valeurs prédéfinies dans les
champs.

e Mettre en place le code sur un serveur accessible par la victime. En CTF, on peut utiliser des services Web publics tels que
Beeceptor, Pipedream ou encore ngrok.

e Avec le compte de la victime authentifiée sur I'application, visiter la page qui contient la charge d'attaque.

e Sj apres avoir navigué sur la page, I'action est réalisée sans avoir eu d'interaction supplémentaire, I'attaque est possible.

Pro-tips : pour utiliser deux comptes authentifiés sur la méme application, vous pouvez utiliser la navigation privée, ou les
containers tabs. Sinon, il est possible d'utiliser I'extension Pwnfox disponible seulement pour le navigateur Firefox.

Exploiter

Conséquences potentielles

Les conséquences potentielles de ce type d'attaque dépendent grandement de la nature de I'application ciblée. Par exemple, dans le cas
d’une application bancaire vulnérable, il peut étre possible :

D’usurper un compte utilisateur (par exemple en exploitant un formulaire de changement de mot de passe ou d'email) ;
De modifier les informations de compte (telles que les adresses de contact ou encore les informations personnelles) ;

De déclencher des transactions financieres (comme des achats ou des paiements) sans le consentement de I'utilisateur ;
D’ajouter des bénéficiaires ou des comptes tiers pour les transactions financiéres.

Contres-mesures

Les contre-mesures suivantes peuvent étre mises en ceuvre :

o Utiliser des jetons cryptographiques pour associer une demande a une action spécifique. Le jeton peut étre régénéré a
chaque demande, de sorte que si une demande avec un jeton invalide est recue par le serveur, elle peut étre écartée de maniére
fiable. Le jeton est considéré comme invalide s’il est arrivé avec une demande autre que I'action a laquelle il était censé étre
associé.

o Utiliser un second facteur d’authentification. L'utilisateur peut étre invité a confirmer une action chaque fois qu’une action
concernant des données potentiellement sensibles est invoquée. De cette fagon, méme si I'attaquant parvient a faire en sorte que
I'utilisateur clique sur un lien malveillant et demande I'action souhaitée, I'utilisateur peut encore refuser la confirmation et ainsi étre
averti que son compte a potentiellement été compromis.

o Mettre en place I'option 'Same-Site' sur les cookies de session. L'option Same-Site peut étre précisée lors de I'attribution
d'un cookie par le serveur. Cet attribut permet de réduire le domaine de diffusion du cookie associé selon trois niveaux de politiques
: None, Lax et Strict.

Comment cela fonctionne ?

/ Printed on 2026/01/28 09:35


https://beeceptor.com/
https://pipedream.com/requestbin
https://ngrok.com/
https://support.mozilla.org/fr/kb/utiliser-conteneurs-firefox
https://addons.mozilla.org/en-US/firefox/addon/pwnfox/

2026/01/28 09:35 3/5 Cross-Site Request Forgery

Exemple 1

Le formulaire HTML ci-dessous permet a un utilisateur légitime de modifier I'email avec lequel son compte est associé :
<form action="/account/edit-email" method="post">
<input type="email" name="email">
<button type="submit">Change Email</button>
</form>
La requéte envoyée via ce formulaire se présente comme ceci :
POST /account/edit-email HTTP/2
Host: example.ex

Cookie: session=JVIWLK4mrRS304zX64N0S2fmADrFKIgo

email=new-email@root-me.org

A la réception de cette requéte, le serveur modifie I'email du compte sans plus de vérifications. Ce formulaire respecte bien les 3 prérequis
présentés dans le point Explorer. Pour mettre en place I'attaque, on ré-utilise le formulaire HTML Iégitime que I'on modifie Iégerement pour
I'héberger sur un serveur que I'on contrdle :
<form id="malicious" action="https://example.ex/account/edit-email" method="post">

<input type="email" name="email" value="hackerman@root-me.org" />

<button type="submit">Change Email</button>
</form>
<script>

document.getElementById('malicious').submit();
</script>

Attention : le formulaire d'exploitation est hébergé sur un serveur dont le nom de domaine est différent de celui a
destination de la requéte. Il est important de bien préciser le domaine de destination dans le champ action de la balise
form. Sinon, la requéte sera dirigée vers

/account/edit-email

du domaine appartenant a l'attaquant.
Le JavaScript permet d'automatiquement soumettre le formulaire dés que la page est chargée. Si la personne visitant la page est un
utilisateur de I'application
example.ex

, la requéte envoyée contiendra son cookie de session.

Notre attaque est préte a étre exploitée. On transmet a la victime I'URL contenant la charge ci-dessus et on patiente jusqu'a ce que celle-ci
visite la page. Une fois fait, il ne reste alors qu'a utiliser la fonctionnalité d'oubli de mot de passe en précisant le mail tout juste changé

hackerman@root-me.org

pour compromettre totalement le compte de la victime.
Exemple 2

Dans ce nouvel exemple, le formulaire est protégé par un jeton cryptographique. Ce jeton est créé par le serveur a la réception d'une
requéte vers

/account
et transmis dans un champ caché du formulaire (nommé dans I'exemple
csrf-token

) avec le reste de la réponse. Le formulaire ressemble a ceci :

Les cours du BTS SIO -/


http://december.com/html/4/element/form.html
http://december.com/html/4/element/input.html
http://december.com/html/4/element/button.html
http://december.com/html/4/element/button.html
http://december.com/html/4/element/form.html
http://december.com/html/4/element/form.html
http://december.com/html/4/element/input.html
http://december.com/html/4/element/button.html
http://december.com/html/4/element/button.html
http://december.com/html/4/element/form.html
http://december.com/html/4/element/script.html
http://december.com/html/4/element/script.html

Last update: . I . . . Prove
2025/07/03 12:20 cyber:vulnerabilite:cross_site_request_forgery /doku.php/cyber/vulnerabilite/cross_site_request_forgery?rev=1751538013

<form action="/account/edit-email" method="post">
<input type="hidden" name="csrf-token" value="4db830b9ca7301988edl4e3ed04ad7cl">

<input type="email" name="email">
<button type="submit">Change Email</button>
</form>

Un utilisateur légitime voulant modifier son email, va renvoyer le méme jeton que celui transmis par le serveur. Ce-dernier va pouvoir faire
la liaison entre la premiere requéte vers

/account
et la seconde requéte vers

/account/edit-mail

qui contient le méme jeton. Dans le cas ol ces jetons ne seraient pas égaux, cela signifie que la seconde requéte ne provient pas d'une
premiére requéte vers

/account

, et donc que la requéte est probablement illégitime ; I'email n'est alors pas modifié par le serveur.

POST /account/edit-email HTTP/2

Host: example.ex
Cookie: session=JVIWLK4mrRS304zX64N0S2fmADrFKIgo

csrf-token=4db830b9ca7301988ed14e3ed04ad7cl&email=new-email@root-me.org

Il existe malgré tout des techniques pour contourner ce jeton. Imaginons que ce dernier n'est pas lié a un utilisateur, mais commun a tous.
Cela signifie que n'importe quel utilisateur réalisant une requéte vers

/account

génére un jeton qui peut étre utilisé par n'importe qui pour légitimer une requéte vers

/account/edit-mail

Un attaquant peut alors générer un jeton valide au préalable de son exploitation et le placer comme valeur dans sa charge malveillante :

<form id="malicious" action="https://example.ex/account/edit-email" method="post">
<input type="hidden" name="csrf-token" value="f7cc02f6ba84fbe®0d2d90ca3fee3946d">

<input type="email" name="email" value="hackerman@root-me.org" />
<button type="submit">Change Email</button>
</form>

<script>
document.getElementById('malicious').submit();

</script>

Les jetons étant communs a tous les utilisateurs, le serveur va simplement vérifier que le token est dans sa base de données. Etant générée
en amont sur le compte de I'attaquant de maniere Iégitime, la requéte est validée et I'attaque réussie.

pour_que_la_verification_par_jeton_csrf soit_efficace_il_est_important_que_celui-
Ci_soit_genere_de maniere_aleatoire_unique_pour_chaque_utilisateur_et etre_associe_a une_duree_de_validite_limitee

Retour fiches vulnérabilités

e Cyber fiches vulnérabilités

Printed on 2026/01/28 09:35


/lib/exe/fetch.php/cyber/vulnerabilite/pour_que_la_verification_par_jeton_csrf_soit_efficace_il_est_important_que_celui-ci_soit_genere_de_maniere_aleatoire_unique_pour_chaque_utilisateur_et_etre_associe_a_une_duree_de_validite_limitee
/lib/exe/fetch.php/cyber/vulnerabilite/pour_que_la_verification_par_jeton_csrf_soit_efficace_il_est_important_que_celui-ci_soit_genere_de_maniere_aleatoire_unique_pour_chaque_utilisateur_et_etre_associe_a_une_duree_de_validite_limitee
/doku.php/cyber/vulnerabilite/accueil

2026/01/28 09:35 5/5 Cross-Site Request Forgery

From:
/ - Les cours du BTS SIO

Permanent link:
/doku.php/cyber/vulnerabilite/cross_site_request_forgery?rev=1751538013

Last update: 2025/07/03 12:20

Les cours du BTS SIO -/


/doku.php/cyber/vulnerabilite/cross_site_request_forgery?rev=1751538013

	Cross-Site Request Forgery
	Description
	Pré-requis d’exploitation
	Compétences nécessaires
	Outils nécessaires

	Flux d’exécution
	Explorer
	Expérimenter
	Exploiter

	Conséquences potentielles
	Contres-mesures

	Comment cela fonctionne ?
	Exemple 1
	Exemple 2

	Retour fiches vulnérabilités

