
2026/01/16 14:07 1/2 Fiche savoirs : programmation événementielle en C#

Les cours du BTS SIO - /

Fiche savoirs : programmation événementielle en C#

Dans une application de bureau vous mettez en oeuvre une programmation événementielle qui est différente de la programmation en mode
console.

L'interface

Exemple avec cette application graphique de bureau :

L'interface est graphique et l'utilisateur est maître de l'ordre d'exécution :

il peut décider de saisir 2 nombres, puis de cliquer sur l'opération voulue,
éventuellement de cliquer sur la seconde opération sans modifier les 2 nombres ou en n'en modifiant qu'un seul,
etc.

C'est l'utilisateur qui choisit à quel moment doit s'exécuter une commande en fonction des objets graphiques qu'il va solliciter.

De plus, l'aspect visuel est nettement plus attractif et intuitif :

l'opération est posée pour être plus claire
la ligne permet de bien voir la séparation entre la saisie des nombres et l'affichage du résultat,
les dessins (signes d'opérations) sont plus parlants que le texte…

Voici les caractéristiques des objets graphiques :

Nom (name) Type Autres propriétés
txtValeur1 TextBox TextAlign : Right
txtValeur2 TextBox (idem txtValeur1)
txtResultat TextBox (idem txtValeur1)
lblOperation Label Font : Size : 16
btnAjouter Button Font : Size : 20
Font : Bold : True
btnMultiplier Button (idem btnAjouter)
btnEffacer Button Image : image fournie de la gomme ou image de votre choix redimensionnée
btsQuitter Button (idem btnEffacer avec une autre image)

En l'état, l'application peut déjà être testée : les boutons ne sont pas encore actifs mais il est déjà possible de saisir des valeurs dans les
zones de saisie.

Le code événementiel

Voici le code de chaque événement :

Clic sur btnEffacer : Vider les 3 zones de texte et le label de l'opération. <code c#> private void
btnEffacerClick(object sender, EventArgs e) { txtValeur1.Text = “”; txtValeur2.Text = “”; txtResultat.Text = “”;
lblOperation.Text = “”; } </code> * Clic sur btnQuitter : Quitter l'application. <code c#> private void
btnQuitterClick(object sender, EventArgs e) { Application.Exit(); } </code> * Clic sur btnAjouter : Afficher le signe +
dans le label de l'opération.
Faire la somme des 2 valeurs saisies (si c'est possible) et la transférer dans txtResultat <code c#> private void

/lib/exe/detail.php/bloc1/bureau_22.png?id=bloc1%3Aevenementiel
/lib/exe/detail.php/bloc1/bureau_23.png?id=bloc1%3Aevenementiel


Last update: 2023/11/14 13:04 bloc1:evenementiel /doku.php/bloc1/evenementiel

/ Printed on 2026/01/16 14:07

btnAjouterClick(object sender, EventArgs e) { try { txtResultat.Text = (float.Parse(txtValeur1.Text) +
float.Parse(txtValeur2.Text)).ToString(); lblOperation.Text = “+”; } catch { }; } </code> * Clic sur btnMultiplier :
Afficher le signe “x” dans le label de l'opération.
Faire la multiplication des 2 valeurs saisies (si c'est possible) et la transférer dans txtResultat. <code c#> private
void btnMultiplierClick(object sender, EventArgs e) { try { txtResultat.Text = (float.Parse(txtValeur1.Text) *
float.Parse(txtValeur2.Text)).ToString(); lblOperation.Text = “x”; } catch { }; } </code> * Changement de texte dans
txtValeur1 : Vider l'affichage du résultat et le label de l'opération. <code c#> private void
txtValeur1TextChanged(object sender, EventArgs e) { txtResultat.Text = “”; lblOperation.Text = “”; } </code> *
Changement de texte dans txtValeur2 : Vider l'affichage du résultat et le label de l'opération. <code c#> private void
txtValeur2TextChanged(object sender, EventArgs e) { txtResultat.Text = “”; lblOperation.Text = “”; } </code>
===== Le code non événementiel ===== Il est possible de créer des modules non événementiels, comme dans la
programmation procédurale classique, pour optimiser le code. Par exemple, on remarque que le code est identique
dans les 2 foncions événementielles sur le changement de texte dans txtValeur1 et txtValeur2. On peut alors créer
un module isolé et l'appeler dans les deux procédures événementielles. * Isoler le code : Créer un module non
événementiel <code c#> private void AnnuleOperation() { lblOperation.Text = “”; txtResultat.Text = “”; } </code> *
Appeler le module : Appeler le module dans les procédures événementielles (par exemple pour txtValeur1). <code
c#> private void txtValeur1_TextChanged(object sender, EventArgs e) { AnnuleOperation(); } </code>

From:
/ - Les cours du BTS SIO

Permanent link:
/doku.php/bloc1/evenementiel

Last update: 2023/11/14 13:04

/doku.php/bloc1/evenementiel

	Fiche savoirs : programmation événementielle en C#
	L'interface
	Le code événementiel


